Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing

[Display omitted] The current study utilized an artificial neural network (ANN) to generate computational models to achieve process optimization for a previously developed continuous liposome manufacturing system. The liposome formation was based on a continuous manufacturing system with a co-axial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2021-06, Vol.603, p.120713-120713, Article 120713
Hauptverfasser: Sansare, Sameera, Duran, Tibo, Mohammadiarani, Hossein, Goyal, Manish, Yenduri, Gowtham, Costa, Antonio, Xu, Xiaoming, O'Connor, Thomas, Burgess, Diane, Chaudhuri, Bodhisattwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120713
container_issue
container_start_page 120713
container_title International journal of pharmaceutics
container_volume 603
creator Sansare, Sameera
Duran, Tibo
Mohammadiarani, Hossein
Goyal, Manish
Yenduri, Gowtham
Costa, Antonio
Xu, Xiaoming
O'Connor, Thomas
Burgess, Diane
Chaudhuri, Bodhisattwa
description [Display omitted] The current study utilized an artificial neural network (ANN) to generate computational models to achieve process optimization for a previously developed continuous liposome manufacturing system. The liposome formation was based on a continuous manufacturing system with a co-axial turbulent jet in a co-flow technology. The ethanol phase with lipids and aqueous phase resulted in liposomes of homogeneous sizes. The input features of the ANN included critical material attributes (CMAs) (e.g., hydrocarbon tail length, cholesterol percent, and buffer type) and critical process parameters (CPPs) (e.g., solvent temperature and flow rate), while the ANN outputs included critical quality attributes (CQAs) of liposomes (i.e., particle size and polydispersity index (PDI)). Two common ANN architectures, multiple-input-multiple-output (MIMO) models and multiple-input–single-output (MISO) models, were evaluated in this study, where the MISO outperformed MIMO with improved accuracy. Molecular descriptors, obtained from PaDEL-Descriptor software, were used to capture the physicochemical properties of the lipids and used in training of the ANN. The combination of CMAs, CPPs, and molecular descriptors as inputs to the MISO ANN model reduced the training and testing mean relative error. Additionally, a graphic user interface (GUI) was successfully developed to assist the end-user in performing interactive simulated risk analysis and visualizing model predictions.
doi_str_mv 10.1016/j.ijpharm.2021.120713
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2531209854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517321005184</els_id><sourcerecordid>2531209854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-c079729cf96f3c91dec7c1c925166c6c94aa51db1374a1afd1370bc90afa24b03</originalsourceid><addsrcrecordid>eNqNkEuLFDEUhYMoTjv6E4QsBak2j6pKZyVD42NgwI2uQ_pW4ty2KimT1DTz701bjVtndc7ifJfLR8hbzrac8f7DcYvH-d6maSuY4FsumOLyGdnwnZKNbFX_nGyYVLum40pekVc5HxljveDyJbmSLeNaq3ZDHm9SQY-AdqTBLelvlFNMvzLFQIsNg5voCcs9neLoYBltooPLkHAuMWVqM52TGxAKPjhaYhwz9TFRiKFgWOKS6YhzzHFydLJh8RbKkjD8fE1eeDtm9-aS1-TH50_f91-bu29fbvc3dw3IVpQGmNJKaPC69xI0Hxwo4KBFx_seetCttR0fDlyq1nLrh1rYATSz3or2wOQ1ebfenVP8vbhczIQZ3Dja4Op3RnSyytO7rq3Tbp1Cijkn582ccLLp0XBmztbN0Vysm7N1s1qv3PuVO7lD9BnQBXD_2LP2XjItdW1M1PXu6es9Flswhn1cQqnoxxV1VdgDumQu-IDJQTFDxP-8-ge4Q7BP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531209854</pqid></control><display><type>article</type><title>Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Sansare, Sameera ; Duran, Tibo ; Mohammadiarani, Hossein ; Goyal, Manish ; Yenduri, Gowtham ; Costa, Antonio ; Xu, Xiaoming ; O'Connor, Thomas ; Burgess, Diane ; Chaudhuri, Bodhisattwa</creator><creatorcontrib>Sansare, Sameera ; Duran, Tibo ; Mohammadiarani, Hossein ; Goyal, Manish ; Yenduri, Gowtham ; Costa, Antonio ; Xu, Xiaoming ; O'Connor, Thomas ; Burgess, Diane ; Chaudhuri, Bodhisattwa</creatorcontrib><description>[Display omitted] The current study utilized an artificial neural network (ANN) to generate computational models to achieve process optimization for a previously developed continuous liposome manufacturing system. The liposome formation was based on a continuous manufacturing system with a co-axial turbulent jet in a co-flow technology. The ethanol phase with lipids and aqueous phase resulted in liposomes of homogeneous sizes. The input features of the ANN included critical material attributes (CMAs) (e.g., hydrocarbon tail length, cholesterol percent, and buffer type) and critical process parameters (CPPs) (e.g., solvent temperature and flow rate), while the ANN outputs included critical quality attributes (CQAs) of liposomes (i.e., particle size and polydispersity index (PDI)). Two common ANN architectures, multiple-input-multiple-output (MIMO) models and multiple-input–single-output (MISO) models, were evaluated in this study, where the MISO outperformed MIMO with improved accuracy. Molecular descriptors, obtained from PaDEL-Descriptor software, were used to capture the physicochemical properties of the lipids and used in training of the ANN. The combination of CMAs, CPPs, and molecular descriptors as inputs to the MISO ANN model reduced the training and testing mean relative error. Additionally, a graphic user interface (GUI) was successfully developed to assist the end-user in performing interactive simulated risk analysis and visualizing model predictions.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2021.120713</identifier><identifier>PMID: 34019974</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Artificial neural network (ANN) ; Co-axial turbulent jet flow ; Graphical user interface (GUI) ; Life Sciences &amp; Biomedicine ; Liposomes ; Molecular descriptors ; Pharmacology &amp; Pharmacy ; Predictive modeling ; Science &amp; Technology</subject><ispartof>International journal of pharmaceutics, 2021-06, Vol.603, p.120713-120713, Article 120713</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663093900002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c342t-c079729cf96f3c91dec7c1c925166c6c94aa51db1374a1afd1370bc90afa24b03</citedby><cites>FETCH-LOGICAL-c342t-c079729cf96f3c91dec7c1c925166c6c94aa51db1374a1afd1370bc90afa24b03</cites><orcidid>0000-0002-1286-0871 ; 0000-0002-4976-3282 ; 0000-0002-6471-2109 ; 0000-0003-4748-6581 ; 0000-0003-1672-0830 ; 0000-0001-5678-2759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2021.120713$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Sansare, Sameera</creatorcontrib><creatorcontrib>Duran, Tibo</creatorcontrib><creatorcontrib>Mohammadiarani, Hossein</creatorcontrib><creatorcontrib>Goyal, Manish</creatorcontrib><creatorcontrib>Yenduri, Gowtham</creatorcontrib><creatorcontrib>Costa, Antonio</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>O'Connor, Thomas</creatorcontrib><creatorcontrib>Burgess, Diane</creatorcontrib><creatorcontrib>Chaudhuri, Bodhisattwa</creatorcontrib><title>Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing</title><title>International journal of pharmaceutics</title><addtitle>INT J PHARMACEUT</addtitle><description>[Display omitted] The current study utilized an artificial neural network (ANN) to generate computational models to achieve process optimization for a previously developed continuous liposome manufacturing system. The liposome formation was based on a continuous manufacturing system with a co-axial turbulent jet in a co-flow technology. The ethanol phase with lipids and aqueous phase resulted in liposomes of homogeneous sizes. The input features of the ANN included critical material attributes (CMAs) (e.g., hydrocarbon tail length, cholesterol percent, and buffer type) and critical process parameters (CPPs) (e.g., solvent temperature and flow rate), while the ANN outputs included critical quality attributes (CQAs) of liposomes (i.e., particle size and polydispersity index (PDI)). Two common ANN architectures, multiple-input-multiple-output (MIMO) models and multiple-input–single-output (MISO) models, were evaluated in this study, where the MISO outperformed MIMO with improved accuracy. Molecular descriptors, obtained from PaDEL-Descriptor software, were used to capture the physicochemical properties of the lipids and used in training of the ANN. The combination of CMAs, CPPs, and molecular descriptors as inputs to the MISO ANN model reduced the training and testing mean relative error. Additionally, a graphic user interface (GUI) was successfully developed to assist the end-user in performing interactive simulated risk analysis and visualizing model predictions.</description><subject>Artificial neural network (ANN)</subject><subject>Co-axial turbulent jet flow</subject><subject>Graphical user interface (GUI)</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Liposomes</subject><subject>Molecular descriptors</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>Predictive modeling</subject><subject>Science &amp; Technology</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEuLFDEUhYMoTjv6E4QsBak2j6pKZyVD42NgwI2uQ_pW4ty2KimT1DTz701bjVtndc7ifJfLR8hbzrac8f7DcYvH-d6maSuY4FsumOLyGdnwnZKNbFX_nGyYVLum40pekVc5HxljveDyJbmSLeNaq3ZDHm9SQY-AdqTBLelvlFNMvzLFQIsNg5voCcs9neLoYBltooPLkHAuMWVqM52TGxAKPjhaYhwz9TFRiKFgWOKS6YhzzHFydLJh8RbKkjD8fE1eeDtm9-aS1-TH50_f91-bu29fbvc3dw3IVpQGmNJKaPC69xI0Hxwo4KBFx_seetCttR0fDlyq1nLrh1rYATSz3or2wOQ1ebfenVP8vbhczIQZ3Dja4Op3RnSyytO7rq3Tbp1Cijkn582ccLLp0XBmztbN0Vysm7N1s1qv3PuVO7lD9BnQBXD_2LP2XjItdW1M1PXu6es9Flswhn1cQqnoxxV1VdgDumQu-IDJQTFDxP-8-ge4Q7BP</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Sansare, Sameera</creator><creator>Duran, Tibo</creator><creator>Mohammadiarani, Hossein</creator><creator>Goyal, Manish</creator><creator>Yenduri, Gowtham</creator><creator>Costa, Antonio</creator><creator>Xu, Xiaoming</creator><creator>O'Connor, Thomas</creator><creator>Burgess, Diane</creator><creator>Chaudhuri, Bodhisattwa</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1286-0871</orcidid><orcidid>https://orcid.org/0000-0002-4976-3282</orcidid><orcidid>https://orcid.org/0000-0002-6471-2109</orcidid><orcidid>https://orcid.org/0000-0003-4748-6581</orcidid><orcidid>https://orcid.org/0000-0003-1672-0830</orcidid><orcidid>https://orcid.org/0000-0001-5678-2759</orcidid></search><sort><creationdate>20210615</creationdate><title>Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing</title><author>Sansare, Sameera ; Duran, Tibo ; Mohammadiarani, Hossein ; Goyal, Manish ; Yenduri, Gowtham ; Costa, Antonio ; Xu, Xiaoming ; O'Connor, Thomas ; Burgess, Diane ; Chaudhuri, Bodhisattwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-c079729cf96f3c91dec7c1c925166c6c94aa51db1374a1afd1370bc90afa24b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural network (ANN)</topic><topic>Co-axial turbulent jet flow</topic><topic>Graphical user interface (GUI)</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Liposomes</topic><topic>Molecular descriptors</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>Predictive modeling</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansare, Sameera</creatorcontrib><creatorcontrib>Duran, Tibo</creatorcontrib><creatorcontrib>Mohammadiarani, Hossein</creatorcontrib><creatorcontrib>Goyal, Manish</creatorcontrib><creatorcontrib>Yenduri, Gowtham</creatorcontrib><creatorcontrib>Costa, Antonio</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>O'Connor, Thomas</creatorcontrib><creatorcontrib>Burgess, Diane</creatorcontrib><creatorcontrib>Chaudhuri, Bodhisattwa</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sansare, Sameera</au><au>Duran, Tibo</au><au>Mohammadiarani, Hossein</au><au>Goyal, Manish</au><au>Yenduri, Gowtham</au><au>Costa, Antonio</au><au>Xu, Xiaoming</au><au>O'Connor, Thomas</au><au>Burgess, Diane</au><au>Chaudhuri, Bodhisattwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing</atitle><jtitle>International journal of pharmaceutics</jtitle><stitle>INT J PHARMACEUT</stitle><date>2021-06-15</date><risdate>2021</risdate><volume>603</volume><spage>120713</spage><epage>120713</epage><pages>120713-120713</pages><artnum>120713</artnum><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] The current study utilized an artificial neural network (ANN) to generate computational models to achieve process optimization for a previously developed continuous liposome manufacturing system. The liposome formation was based on a continuous manufacturing system with a co-axial turbulent jet in a co-flow technology. The ethanol phase with lipids and aqueous phase resulted in liposomes of homogeneous sizes. The input features of the ANN included critical material attributes (CMAs) (e.g., hydrocarbon tail length, cholesterol percent, and buffer type) and critical process parameters (CPPs) (e.g., solvent temperature and flow rate), while the ANN outputs included critical quality attributes (CQAs) of liposomes (i.e., particle size and polydispersity index (PDI)). Two common ANN architectures, multiple-input-multiple-output (MIMO) models and multiple-input–single-output (MISO) models, were evaluated in this study, where the MISO outperformed MIMO with improved accuracy. Molecular descriptors, obtained from PaDEL-Descriptor software, were used to capture the physicochemical properties of the lipids and used in training of the ANN. The combination of CMAs, CPPs, and molecular descriptors as inputs to the MISO ANN model reduced the training and testing mean relative error. Additionally, a graphic user interface (GUI) was successfully developed to assist the end-user in performing interactive simulated risk analysis and visualizing model predictions.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><pmid>34019974</pmid><doi>10.1016/j.ijpharm.2021.120713</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1286-0871</orcidid><orcidid>https://orcid.org/0000-0002-4976-3282</orcidid><orcidid>https://orcid.org/0000-0002-6471-2109</orcidid><orcidid>https://orcid.org/0000-0003-4748-6581</orcidid><orcidid>https://orcid.org/0000-0003-1672-0830</orcidid><orcidid>https://orcid.org/0000-0001-5678-2759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2021-06, Vol.603, p.120713-120713, Article 120713
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_2531209854
source Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Artificial neural network (ANN)
Co-axial turbulent jet flow
Graphical user interface (GUI)
Life Sciences & Biomedicine
Liposomes
Molecular descriptors
Pharmacology & Pharmacy
Predictive modeling
Science & Technology
title Artificial neural networks in tandem with molecular descriptors as predictive tools for continuous liposome manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20in%20tandem%20with%20molecular%20descriptors%20as%20predictive%20tools%20for%20continuous%20liposome%20manufacturing&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Sansare,%20Sameera&rft.date=2021-06-15&rft.volume=603&rft.spage=120713&rft.epage=120713&rft.pages=120713-120713&rft.artnum=120713&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2021.120713&rft_dat=%3Cproquest_webof%3E2531209854%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531209854&rft_id=info:pmid/34019974&rft_els_id=S0378517321005184&rfr_iscdi=true