Derivation and external validation of risk stratification models for severe maternal morbidity using prenatal encounter diagnosis codes

Objective We sought to develop a prediction model using prenatal diagnosis codes that could help clinicians objectively stratify a women’s risk for delivery-related morbidity. Study design We performed a prospective cohort study of women delivering at a single academic medical center between 2016 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of perinatology 2021-11, Vol.41 (11), p.2590-2596
Hauptverfasser: Clapp, Mark A., McCoy Jr, Thomas H., James, Kaitlyn E., Kaimal, Anjali J., Roy H. Perlis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2596
container_issue 11
container_start_page 2590
container_title Journal of perinatology
container_volume 41
creator Clapp, Mark A.
McCoy Jr, Thomas H.
James, Kaitlyn E.
Kaimal, Anjali J.
Roy H. Perlis
description Objective We sought to develop a prediction model using prenatal diagnosis codes that could help clinicians objectively stratify a women’s risk for delivery-related morbidity. Study design We performed a prospective cohort study of women delivering at a single academic medical center between 2016 and 2019. Diagnosis codes from outpatient encounters were extracted from the electronic health record. Standard and common machine-learning methods for variable selection were compared. The performance characteristics from the selected model in the training data set—a LASSO model with a lambda that minimized the Bayes information criteria—were compared in a testing and external validation set. Results The model identified a group of women, those in the highest decile of predicted risk, who were at a two to threefold increased risk of maternal morbidity. Conclusion As EHR data becomes more ubiquitous, other data types generated from the prenatal period may improve the model’s performance.
doi_str_mv 10.1038/s41372-021-01072-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2529947721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686656165</galeid><sourcerecordid>A686656165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-ac9049b48e34404e136d154696ee8d8c82d073c0b4e5d09a1099173ed27db0b33</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhS0EokPhBVggS0iITYr_kyyrUn6kSmxgbTn2zdQlsQc7GdG-AK9dhwyUIoS8sHXud450rYPQc0pOKOHNmywor1lFGK0IJeV18wBtqKhVJaXgD9GG1IJXDRfqCD3J-YqQZVg_RkdcEMqI5Bv04y0kvzeTjwGb4DB8nyAFM-C9Gbxb9djj5PNXnKdUhN7bVR6jgyHjPiacYQ8J8GgO5jGmzjs_XeM5-7DFuwTBTGUAwcY5FAo7b7YhZp-xLTn5KXrUmyHDs8N9jL68O_989qG6-PT-49npRWVFzafK2JaIthMNcCGIAMqVo1KoVgE0rrENc6TmlnQCpCOtoaRtac3Bsdp1pOP8GL1ec3cpfpshT3r02cIwmABxzppJ1rairhkt6Mu_0Ks4L-sVSpFWMikYu6O2ZgDtQx_LL9klVJ-qRimpqJKFOvkHVY6D0dsYoPdFv2d49YfhEswwXeY4zMvP5_sgW0GbYs4Jer1LfjTpWlOil5rotSa61ET_rIm-KaYXh9XmbgT32_KrFwXgK5DLKGwh3e3-n9hbl5fIjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609525422</pqid></control><display><type>article</type><title>Derivation and external validation of risk stratification models for severe maternal morbidity using prenatal encounter diagnosis codes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Clapp, Mark A. ; McCoy Jr, Thomas H. ; James, Kaitlyn E. ; Kaimal, Anjali J. ; Roy H. Perlis</creator><creatorcontrib>Clapp, Mark A. ; McCoy Jr, Thomas H. ; James, Kaitlyn E. ; Kaimal, Anjali J. ; Roy H. Perlis</creatorcontrib><description>Objective We sought to develop a prediction model using prenatal diagnosis codes that could help clinicians objectively stratify a women’s risk for delivery-related morbidity. Study design We performed a prospective cohort study of women delivering at a single academic medical center between 2016 and 2019. Diagnosis codes from outpatient encounters were extracted from the electronic health record. Standard and common machine-learning methods for variable selection were compared. The performance characteristics from the selected model in the training data set—a LASSO model with a lambda that minimized the Bayes information criteria—were compared in a testing and external validation set. Results The model identified a group of women, those in the highest decile of predicted risk, who were at a two to threefold increased risk of maternal morbidity. Conclusion As EHR data becomes more ubiquitous, other data types generated from the prenatal period may improve the model’s performance.</description><identifier>ISSN: 0743-8346</identifier><identifier>EISSN: 1476-5543</identifier><identifier>DOI: 10.1038/s41372-021-01072-z</identifier><identifier>PMID: 34012053</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>692/499 ; 692/700/1750/1747 ; Bayes Theorem ; Bayesian analysis ; Care and treatment ; Clinical coding ; Diagnosis ; Electronic Health Records ; Electronic medical records ; Female ; Health care facilities ; Humans ; Labor, Complicated ; Learning algorithms ; Machine Learning ; Medical diagnosis ; Medicine ; Medicine &amp; Public Health ; Methods ; Morbidity ; Pediatric Surgery ; Pediatrics ; Prediction models ; Pregnancy ; Pregnant women ; Prenatal Diagnosis ; Prospective Studies ; Risk ; Risk Assessment ; Risk factors</subject><ispartof>Journal of perinatology, 2021-11, Vol.41 (11), p.2590-2596</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-ac9049b48e34404e136d154696ee8d8c82d073c0b4e5d09a1099173ed27db0b33</citedby><cites>FETCH-LOGICAL-c473t-ac9049b48e34404e136d154696ee8d8c82d073c0b4e5d09a1099173ed27db0b33</cites><orcidid>0000-0001-5568-4444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41372-021-01072-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41372-021-01072-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34012053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clapp, Mark A.</creatorcontrib><creatorcontrib>McCoy Jr, Thomas H.</creatorcontrib><creatorcontrib>James, Kaitlyn E.</creatorcontrib><creatorcontrib>Kaimal, Anjali J.</creatorcontrib><creatorcontrib>Roy H. Perlis</creatorcontrib><title>Derivation and external validation of risk stratification models for severe maternal morbidity using prenatal encounter diagnosis codes</title><title>Journal of perinatology</title><addtitle>J Perinatol</addtitle><addtitle>J Perinatol</addtitle><description>Objective We sought to develop a prediction model using prenatal diagnosis codes that could help clinicians objectively stratify a women’s risk for delivery-related morbidity. Study design We performed a prospective cohort study of women delivering at a single academic medical center between 2016 and 2019. Diagnosis codes from outpatient encounters were extracted from the electronic health record. Standard and common machine-learning methods for variable selection were compared. The performance characteristics from the selected model in the training data set—a LASSO model with a lambda that minimized the Bayes information criteria—were compared in a testing and external validation set. Results The model identified a group of women, those in the highest decile of predicted risk, who were at a two to threefold increased risk of maternal morbidity. Conclusion As EHR data becomes more ubiquitous, other data types generated from the prenatal period may improve the model’s performance.</description><subject>692/499</subject><subject>692/700/1750/1747</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Care and treatment</subject><subject>Clinical coding</subject><subject>Diagnosis</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Female</subject><subject>Health care facilities</subject><subject>Humans</subject><subject>Labor, Complicated</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methods</subject><subject>Morbidity</subject><subject>Pediatric Surgery</subject><subject>Pediatrics</subject><subject>Prediction models</subject><subject>Pregnancy</subject><subject>Pregnant women</subject><subject>Prenatal Diagnosis</subject><subject>Prospective Studies</subject><subject>Risk</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><issn>0743-8346</issn><issn>1476-5543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks1u1DAUhS0EokPhBVggS0iITYr_kyyrUn6kSmxgbTn2zdQlsQc7GdG-AK9dhwyUIoS8sHXud450rYPQc0pOKOHNmywor1lFGK0IJeV18wBtqKhVJaXgD9GG1IJXDRfqCD3J-YqQZVg_RkdcEMqI5Bv04y0kvzeTjwGb4DB8nyAFM-C9Gbxb9djj5PNXnKdUhN7bVR6jgyHjPiacYQ8J8GgO5jGmzjs_XeM5-7DFuwTBTGUAwcY5FAo7b7YhZp-xLTn5KXrUmyHDs8N9jL68O_989qG6-PT-49npRWVFzafK2JaIthMNcCGIAMqVo1KoVgE0rrENc6TmlnQCpCOtoaRtac3Bsdp1pOP8GL1ec3cpfpshT3r02cIwmABxzppJ1rairhkt6Mu_0Ks4L-sVSpFWMikYu6O2ZgDtQx_LL9klVJ-qRimpqJKFOvkHVY6D0dsYoPdFv2d49YfhEswwXeY4zMvP5_sgW0GbYs4Jer1LfjTpWlOil5rotSa61ET_rIm-KaYXh9XmbgT32_KrFwXgK5DLKGwh3e3-n9hbl5fIjA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Clapp, Mark A.</creator><creator>McCoy Jr, Thomas H.</creator><creator>James, Kaitlyn E.</creator><creator>Kaimal, Anjali J.</creator><creator>Roy H. Perlis</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5568-4444</orcidid></search><sort><creationdate>20211101</creationdate><title>Derivation and external validation of risk stratification models for severe maternal morbidity using prenatal encounter diagnosis codes</title><author>Clapp, Mark A. ; McCoy Jr, Thomas H. ; James, Kaitlyn E. ; Kaimal, Anjali J. ; Roy H. Perlis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-ac9049b48e34404e136d154696ee8d8c82d073c0b4e5d09a1099173ed27db0b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>692/499</topic><topic>692/700/1750/1747</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Care and treatment</topic><topic>Clinical coding</topic><topic>Diagnosis</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Female</topic><topic>Health care facilities</topic><topic>Humans</topic><topic>Labor, Complicated</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methods</topic><topic>Morbidity</topic><topic>Pediatric Surgery</topic><topic>Pediatrics</topic><topic>Prediction models</topic><topic>Pregnancy</topic><topic>Pregnant women</topic><topic>Prenatal Diagnosis</topic><topic>Prospective Studies</topic><topic>Risk</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clapp, Mark A.</creatorcontrib><creatorcontrib>McCoy Jr, Thomas H.</creatorcontrib><creatorcontrib>James, Kaitlyn E.</creatorcontrib><creatorcontrib>Kaimal, Anjali J.</creatorcontrib><creatorcontrib>Roy H. Perlis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of perinatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapp, Mark A.</au><au>McCoy Jr, Thomas H.</au><au>James, Kaitlyn E.</au><au>Kaimal, Anjali J.</au><au>Roy H. Perlis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and external validation of risk stratification models for severe maternal morbidity using prenatal encounter diagnosis codes</atitle><jtitle>Journal of perinatology</jtitle><stitle>J Perinatol</stitle><addtitle>J Perinatol</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>41</volume><issue>11</issue><spage>2590</spage><epage>2596</epage><pages>2590-2596</pages><issn>0743-8346</issn><eissn>1476-5543</eissn><abstract>Objective We sought to develop a prediction model using prenatal diagnosis codes that could help clinicians objectively stratify a women’s risk for delivery-related morbidity. Study design We performed a prospective cohort study of women delivering at a single academic medical center between 2016 and 2019. Diagnosis codes from outpatient encounters were extracted from the electronic health record. Standard and common machine-learning methods for variable selection were compared. The performance characteristics from the selected model in the training data set—a LASSO model with a lambda that minimized the Bayes information criteria—were compared in a testing and external validation set. Results The model identified a group of women, those in the highest decile of predicted risk, who were at a two to threefold increased risk of maternal morbidity. Conclusion As EHR data becomes more ubiquitous, other data types generated from the prenatal period may improve the model’s performance.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34012053</pmid><doi>10.1038/s41372-021-01072-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5568-4444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-8346
ispartof Journal of perinatology, 2021-11, Vol.41 (11), p.2590-2596
issn 0743-8346
1476-5543
language eng
recordid cdi_proquest_miscellaneous_2529947721
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 692/499
692/700/1750/1747
Bayes Theorem
Bayesian analysis
Care and treatment
Clinical coding
Diagnosis
Electronic Health Records
Electronic medical records
Female
Health care facilities
Humans
Labor, Complicated
Learning algorithms
Machine Learning
Medical diagnosis
Medicine
Medicine & Public Health
Methods
Morbidity
Pediatric Surgery
Pediatrics
Prediction models
Pregnancy
Pregnant women
Prenatal Diagnosis
Prospective Studies
Risk
Risk Assessment
Risk factors
title Derivation and external validation of risk stratification models for severe maternal morbidity using prenatal encounter diagnosis codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20external%20validation%20of%20risk%20stratification%20models%20for%20severe%20maternal%20morbidity%20using%20prenatal%20encounter%20diagnosis%20codes&rft.jtitle=Journal%20of%20perinatology&rft.au=Clapp,%20Mark%20A.&rft.date=2021-11-01&rft.volume=41&rft.issue=11&rft.spage=2590&rft.epage=2596&rft.pages=2590-2596&rft.issn=0743-8346&rft.eissn=1476-5543&rft_id=info:doi/10.1038/s41372-021-01072-z&rft_dat=%3Cgale_proqu%3EA686656165%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609525422&rft_id=info:pmid/34012053&rft_galeid=A686656165&rfr_iscdi=true