High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts

Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO molecular medicine 2021-06, Vol.13 (6), p.e13579-n/a
Hauptverfasser: Cretin, Emma, Lopes, Priscilla, Vimont, Elodie, Tatsuta, Takashi, Langer, Thomas, Gazi, Anastasia, Sachse, Martin, Yu‐Wai‐Man, Patrick, Reynier, Pascal, Wai, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e13579
container_title EMBO molecular medicine
container_volume 13
creator Cretin, Emma
Lopes, Priscilla
Vimont, Elodie
Tatsuta, Takashi
Langer, Thomas
Gazi, Anastasia
Sachse, Martin
Yu‐Wai‐Man, Patrick
Reynier, Pascal
Wai, Timothy
description Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has not yet been established whether phenotypic severity can be modulated by genetic modifiers of OPA1. We screened the entire known mitochondrial proteome (1,531 genes) to identify genes that control mitochondrial morphology using a first‐in‐kind imaging pipeline. We identified 145 known and novel candidate genes whose depletion promoted elongation or fragmentation of the mitochondrial network in control fibroblasts and 91 in DOA+ patient fibroblasts that prevented mitochondrial fragmentation, including phosphatidyl glycerophosphate synthase ( PGS1 ). PGS1 depletion reduces CL content in mitochondria and rebalances mitochondrial dynamics in OPA1‐deficient fibroblasts by inhibiting mitochondrial fission, which improves defective respiration, but does not rescue mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity. Our data reveal that the multifaceted roles of OPA1 in mitochondria can be functionally uncoupled by modulating mitochondrial lipid metabolism, providing novel insights into the cellular relevance of mitochondrial fragmentation. Synopsis Phenotypic screening of OPA1 patient fibroblasts identifies multiple genetic suppressors of mitochondrial fragmentation including PGS1, a key enzyme in cardiolipin biosynthesis. PGS1 depletion reduces mitochondrial fission and restores normal mitochondrial morphology to OPA1‐deficient fibroblasts. Mitochondrial morphology defects in human fibroblasts can be automatically imaged and quantified by supervised machine learning, allowing for imaging‐based screening. High‐throughput screening identifies new genes required or the maintenance of mitochondrial morphology in fibroblasts from healthy individuals. High‐throughput screening of OPA1 patient fibroblasts identifies genetic modifiers of mitochondrial fragmentation not previously linked to Dominant Optic Atrophy. Loss of PGS1 in OPA1‐deficient fibroblasts restores mitochondrial morphology and respiration, but not cristae dysmorphology, apoptotic sensitivity, nor mtDNA content. Mitochondrial morphology defects can be functionally uncoupled from other pleiotropic effects of OPA1 loss. Graphical Abstract Phenotypic screening of OPA1 patient fibroblasts identifies
doi_str_mv 10.15252/emmm.202013579
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2529944202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f7ab26593fd4ea9a7b36b1989bf8ee6</doaj_id><sourcerecordid>2529944202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6179-a83d6b9bd6a3ec7365cfa2503d67772fd7c7af4ff08acf6908b7c5dd6fcb54863</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEohdYs0OR2LBJa8e3mAXSqCpMpRmVBawt27ETj5I42ElRdzwCz8iT1G3K0FZCrGwdf-f3ufxZ9gaCE0hKUp6avu9PSlACiAjjz7JDyAgrMK3w8_2d0YPsKMYdAJRQWL3MDhAGEANEDjOzdk37--evqQ1-btpxnvKogzGDG5rc1WaYnHUm5nEex2Bi9CHm3ua9m7xu_VAHJ7vcBtn0CZWT80Puhvzyywrm1qngVSfjFF9lL6zsonl9fx5n3z6dfz1bF5vLzxdnq02hKWS8kBWqqeKqphIZzRAl2sqSgBRljJW2ZppJi60FldSWclAppkldU6sVwRVFx9nFolt7uRNjcL0M18JLJ-4CPjRChsnpzghgmVQlJRzZGhvJJVOIKsgrrmxlzK3Wx0VrnFVvap36C7J7JPr4ZXCtaPyVqGBFCOZJoFgE2idp69VGjGksZg4CoBKXkJMrmPj39x8G_302cRK9i9p0nRyMn6NI6-Yc47TshL57gu78HIY02kQhxgGDFCTqdKF08DEGY_dVQCDu7CNu7SP29kkZbx_2vOf_-CUBHxbgh-vM9f_0xPl2u32oDpbkmPKGxoS_Vf-roBsWouWc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537907160</pqid></control><display><type>article</type><title>High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Cretin, Emma ; Lopes, Priscilla ; Vimont, Elodie ; Tatsuta, Takashi ; Langer, Thomas ; Gazi, Anastasia ; Sachse, Martin ; Yu‐Wai‐Man, Patrick ; Reynier, Pascal ; Wai, Timothy</creator><creatorcontrib>Cretin, Emma ; Lopes, Priscilla ; Vimont, Elodie ; Tatsuta, Takashi ; Langer, Thomas ; Gazi, Anastasia ; Sachse, Martin ; Yu‐Wai‐Man, Patrick ; Reynier, Pascal ; Wai, Timothy</creatorcontrib><description>Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has not yet been established whether phenotypic severity can be modulated by genetic modifiers of OPA1. We screened the entire known mitochondrial proteome (1,531 genes) to identify genes that control mitochondrial morphology using a first‐in‐kind imaging pipeline. We identified 145 known and novel candidate genes whose depletion promoted elongation or fragmentation of the mitochondrial network in control fibroblasts and 91 in DOA+ patient fibroblasts that prevented mitochondrial fragmentation, including phosphatidyl glycerophosphate synthase ( PGS1 ). PGS1 depletion reduces CL content in mitochondria and rebalances mitochondrial dynamics in OPA1‐deficient fibroblasts by inhibiting mitochondrial fission, which improves defective respiration, but does not rescue mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity. Our data reveal that the multifaceted roles of OPA1 in mitochondria can be functionally uncoupled by modulating mitochondrial lipid metabolism, providing novel insights into the cellular relevance of mitochondrial fragmentation. Synopsis Phenotypic screening of OPA1 patient fibroblasts identifies multiple genetic suppressors of mitochondrial fragmentation including PGS1, a key enzyme in cardiolipin biosynthesis. PGS1 depletion reduces mitochondrial fission and restores normal mitochondrial morphology to OPA1‐deficient fibroblasts. Mitochondrial morphology defects in human fibroblasts can be automatically imaged and quantified by supervised machine learning, allowing for imaging‐based screening. High‐throughput screening identifies new genes required or the maintenance of mitochondrial morphology in fibroblasts from healthy individuals. High‐throughput screening of OPA1 patient fibroblasts identifies genetic modifiers of mitochondrial fragmentation not previously linked to Dominant Optic Atrophy. Loss of PGS1 in OPA1‐deficient fibroblasts restores mitochondrial morphology and respiration, but not cristae dysmorphology, apoptotic sensitivity, nor mtDNA content. Mitochondrial morphology defects can be functionally uncoupled from other pleiotropic effects of OPA1 loss. Graphical Abstract Phenotypic screening of OPA1 patient fibroblasts identifies multiple genetic suppressors of mitochondrial fragmentation including PGS1, a key enzyme in cardiolipin biosynthesis. PGS1 depletion reduces mitochondrial fission and restores normal mitochondrial morphology to OPA1‐deficient fibroblasts.</description><identifier>ISSN: 1757-4676</identifier><identifier>EISSN: 1757-4684</identifier><identifier>DOI: 10.15252/emmm.202013579</identifier><identifier>PMID: 34014035</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Apoptosis ; Atrophy ; Bacteriology ; Biochemistry ; Biochemistry, Molecular Biology ; Biophysics ; Cell viability ; Cristae ; Disease ; DNA, Mitochondrial - genetics ; EMBO16 ; EMBO27 ; EMBO57 ; Fibroblasts ; genetic modifiers ; GTP Phosphohydrolases - genetics ; High-Throughput Screening Assays ; high‐throughput screening ; Humans ; Life Sciences ; Lipid metabolism ; Machine learning ; Microbiology and Parasitology ; Microscopy ; Mitochondria ; Mitochondrial DNA ; mitochondrial dynamics ; Molecular biology ; Morphology ; Mutation ; Neurological diseases ; OPA1 ; Optic atrophy ; Optic Atrophy, Autosomal Dominant ; Patients ; Phenotypes ; phospholipid metabolism ; Pipelines ; Protein synthesis ; Proteins ; Proteomes ; Structural Biology ; Virology</subject><ispartof>EMBO molecular medicine, 2021-06, Vol.13 (6), p.e13579-n/a</ispartof><rights>The Author(s) 2021</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2021 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6179-a83d6b9bd6a3ec7365cfa2503d67772fd7c7af4ff08acf6908b7c5dd6fcb54863</citedby><cites>FETCH-LOGICAL-c6179-a83d6b9bd6a3ec7365cfa2503d67772fd7c7af4ff08acf6908b7c5dd6fcb54863</cites><orcidid>0000-0003-0802-4608 ; 0000-0003-1250-1462 ; 0000-0002-2922-3625 ; 0000-0001-7847-9320 ; 0000-0001-5981-9166 ; 0000-0002-6770-6222 ; 0000-0002-8423-233X ; 0000-0003-0003-0587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185549/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185549/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,2102,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34014035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-03242195$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cretin, Emma</creatorcontrib><creatorcontrib>Lopes, Priscilla</creatorcontrib><creatorcontrib>Vimont, Elodie</creatorcontrib><creatorcontrib>Tatsuta, Takashi</creatorcontrib><creatorcontrib>Langer, Thomas</creatorcontrib><creatorcontrib>Gazi, Anastasia</creatorcontrib><creatorcontrib>Sachse, Martin</creatorcontrib><creatorcontrib>Yu‐Wai‐Man, Patrick</creatorcontrib><creatorcontrib>Reynier, Pascal</creatorcontrib><creatorcontrib>Wai, Timothy</creatorcontrib><title>High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts</title><title>EMBO molecular medicine</title><addtitle>EMBO Mol Med</addtitle><addtitle>EMBO Mol Med</addtitle><description>Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has not yet been established whether phenotypic severity can be modulated by genetic modifiers of OPA1. We screened the entire known mitochondrial proteome (1,531 genes) to identify genes that control mitochondrial morphology using a first‐in‐kind imaging pipeline. We identified 145 known and novel candidate genes whose depletion promoted elongation or fragmentation of the mitochondrial network in control fibroblasts and 91 in DOA+ patient fibroblasts that prevented mitochondrial fragmentation, including phosphatidyl glycerophosphate synthase ( PGS1 ). PGS1 depletion reduces CL content in mitochondria and rebalances mitochondrial dynamics in OPA1‐deficient fibroblasts by inhibiting mitochondrial fission, which improves defective respiration, but does not rescue mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity. Our data reveal that the multifaceted roles of OPA1 in mitochondria can be functionally uncoupled by modulating mitochondrial lipid metabolism, providing novel insights into the cellular relevance of mitochondrial fragmentation. Synopsis Phenotypic screening of OPA1 patient fibroblasts identifies multiple genetic suppressors of mitochondrial fragmentation including PGS1, a key enzyme in cardiolipin biosynthesis. PGS1 depletion reduces mitochondrial fission and restores normal mitochondrial morphology to OPA1‐deficient fibroblasts. Mitochondrial morphology defects in human fibroblasts can be automatically imaged and quantified by supervised machine learning, allowing for imaging‐based screening. High‐throughput screening identifies new genes required or the maintenance of mitochondrial morphology in fibroblasts from healthy individuals. High‐throughput screening of OPA1 patient fibroblasts identifies genetic modifiers of mitochondrial fragmentation not previously linked to Dominant Optic Atrophy. Loss of PGS1 in OPA1‐deficient fibroblasts restores mitochondrial morphology and respiration, but not cristae dysmorphology, apoptotic sensitivity, nor mtDNA content. Mitochondrial morphology defects can be functionally uncoupled from other pleiotropic effects of OPA1 loss. Graphical Abstract Phenotypic screening of OPA1 patient fibroblasts identifies multiple genetic suppressors of mitochondrial fragmentation including PGS1, a key enzyme in cardiolipin biosynthesis. PGS1 depletion reduces mitochondrial fission and restores normal mitochondrial morphology to OPA1‐deficient fibroblasts.</description><subject>Apoptosis</subject><subject>Atrophy</subject><subject>Bacteriology</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Cell viability</subject><subject>Cristae</subject><subject>Disease</subject><subject>DNA, Mitochondrial - genetics</subject><subject>EMBO16</subject><subject>EMBO27</subject><subject>EMBO57</subject><subject>Fibroblasts</subject><subject>genetic modifiers</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>High-Throughput Screening Assays</subject><subject>high‐throughput screening</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lipid metabolism</subject><subject>Machine learning</subject><subject>Microbiology and Parasitology</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>mitochondrial dynamics</subject><subject>Molecular biology</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Neurological diseases</subject><subject>OPA1</subject><subject>Optic atrophy</subject><subject>Optic Atrophy, Autosomal Dominant</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>phospholipid metabolism</subject><subject>Pipelines</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Structural Biology</subject><subject>Virology</subject><issn>1757-4676</issn><issn>1757-4684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqFkstu1DAUhiMEohdYs0OR2LBJa8e3mAXSqCpMpRmVBawt27ETj5I42ElRdzwCz8iT1G3K0FZCrGwdf-f3ufxZ9gaCE0hKUp6avu9PSlACiAjjz7JDyAgrMK3w8_2d0YPsKMYdAJRQWL3MDhAGEANEDjOzdk37--evqQ1-btpxnvKogzGDG5rc1WaYnHUm5nEex2Bi9CHm3ua9m7xu_VAHJ7vcBtn0CZWT80Puhvzyywrm1qngVSfjFF9lL6zsonl9fx5n3z6dfz1bF5vLzxdnq02hKWS8kBWqqeKqphIZzRAl2sqSgBRljJW2ZppJi60FldSWclAppkldU6sVwRVFx9nFolt7uRNjcL0M18JLJ-4CPjRChsnpzghgmVQlJRzZGhvJJVOIKsgrrmxlzK3Wx0VrnFVvap36C7J7JPr4ZXCtaPyVqGBFCOZJoFgE2idp69VGjGksZg4CoBKXkJMrmPj39x8G_302cRK9i9p0nRyMn6NI6-Yc47TshL57gu78HIY02kQhxgGDFCTqdKF08DEGY_dVQCDu7CNu7SP29kkZbx_2vOf_-CUBHxbgh-vM9f_0xPl2u32oDpbkmPKGxoS_Vf-roBsWouWc</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Cretin, Emma</creator><creator>Lopes, Priscilla</creator><creator>Vimont, Elodie</creator><creator>Tatsuta, Takashi</creator><creator>Langer, Thomas</creator><creator>Gazi, Anastasia</creator><creator>Sachse, Martin</creator><creator>Yu‐Wai‐Man, Patrick</creator><creator>Reynier, Pascal</creator><creator>Wai, Timothy</creator><general>Nature Publishing Group UK</general><general>EMBO Press</general><general>Wiley Open Access</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0802-4608</orcidid><orcidid>https://orcid.org/0000-0003-1250-1462</orcidid><orcidid>https://orcid.org/0000-0002-2922-3625</orcidid><orcidid>https://orcid.org/0000-0001-7847-9320</orcidid><orcidid>https://orcid.org/0000-0001-5981-9166</orcidid><orcidid>https://orcid.org/0000-0002-6770-6222</orcidid><orcidid>https://orcid.org/0000-0002-8423-233X</orcidid><orcidid>https://orcid.org/0000-0003-0003-0587</orcidid></search><sort><creationdate>20210607</creationdate><title>High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts</title><author>Cretin, Emma ; Lopes, Priscilla ; Vimont, Elodie ; Tatsuta, Takashi ; Langer, Thomas ; Gazi, Anastasia ; Sachse, Martin ; Yu‐Wai‐Man, Patrick ; Reynier, Pascal ; Wai, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6179-a83d6b9bd6a3ec7365cfa2503d67772fd7c7af4ff08acf6908b7c5dd6fcb54863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apoptosis</topic><topic>Atrophy</topic><topic>Bacteriology</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Cell viability</topic><topic>Cristae</topic><topic>Disease</topic><topic>DNA, Mitochondrial - genetics</topic><topic>EMBO16</topic><topic>EMBO27</topic><topic>EMBO57</topic><topic>Fibroblasts</topic><topic>genetic modifiers</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>High-Throughput Screening Assays</topic><topic>high‐throughput screening</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lipid metabolism</topic><topic>Machine learning</topic><topic>Microbiology and Parasitology</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>mitochondrial dynamics</topic><topic>Molecular biology</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Neurological diseases</topic><topic>OPA1</topic><topic>Optic atrophy</topic><topic>Optic Atrophy, Autosomal Dominant</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>phospholipid metabolism</topic><topic>Pipelines</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Structural Biology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cretin, Emma</creatorcontrib><creatorcontrib>Lopes, Priscilla</creatorcontrib><creatorcontrib>Vimont, Elodie</creatorcontrib><creatorcontrib>Tatsuta, Takashi</creatorcontrib><creatorcontrib>Langer, Thomas</creatorcontrib><creatorcontrib>Gazi, Anastasia</creatorcontrib><creatorcontrib>Sachse, Martin</creatorcontrib><creatorcontrib>Yu‐Wai‐Man, Patrick</creatorcontrib><creatorcontrib>Reynier, Pascal</creatorcontrib><creatorcontrib>Wai, Timothy</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EMBO molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cretin, Emma</au><au>Lopes, Priscilla</au><au>Vimont, Elodie</au><au>Tatsuta, Takashi</au><au>Langer, Thomas</au><au>Gazi, Anastasia</au><au>Sachse, Martin</au><au>Yu‐Wai‐Man, Patrick</au><au>Reynier, Pascal</au><au>Wai, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts</atitle><jtitle>EMBO molecular medicine</jtitle><stitle>EMBO Mol Med</stitle><addtitle>EMBO Mol Med</addtitle><date>2021-06-07</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>e13579</spage><epage>n/a</epage><pages>e13579-n/a</pages><issn>1757-4676</issn><eissn>1757-4684</eissn><abstract>Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has not yet been established whether phenotypic severity can be modulated by genetic modifiers of OPA1. We screened the entire known mitochondrial proteome (1,531 genes) to identify genes that control mitochondrial morphology using a first‐in‐kind imaging pipeline. We identified 145 known and novel candidate genes whose depletion promoted elongation or fragmentation of the mitochondrial network in control fibroblasts and 91 in DOA+ patient fibroblasts that prevented mitochondrial fragmentation, including phosphatidyl glycerophosphate synthase ( PGS1 ). PGS1 depletion reduces CL content in mitochondria and rebalances mitochondrial dynamics in OPA1‐deficient fibroblasts by inhibiting mitochondrial fission, which improves defective respiration, but does not rescue mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity. Our data reveal that the multifaceted roles of OPA1 in mitochondria can be functionally uncoupled by modulating mitochondrial lipid metabolism, providing novel insights into the cellular relevance of mitochondrial fragmentation. Synopsis Phenotypic screening of OPA1 patient fibroblasts identifies multiple genetic suppressors of mitochondrial fragmentation including PGS1, a key enzyme in cardiolipin biosynthesis. PGS1 depletion reduces mitochondrial fission and restores normal mitochondrial morphology to OPA1‐deficient fibroblasts. Mitochondrial morphology defects in human fibroblasts can be automatically imaged and quantified by supervised machine learning, allowing for imaging‐based screening. High‐throughput screening identifies new genes required or the maintenance of mitochondrial morphology in fibroblasts from healthy individuals. High‐throughput screening of OPA1 patient fibroblasts identifies genetic modifiers of mitochondrial fragmentation not previously linked to Dominant Optic Atrophy. Loss of PGS1 in OPA1‐deficient fibroblasts restores mitochondrial morphology and respiration, but not cristae dysmorphology, apoptotic sensitivity, nor mtDNA content. Mitochondrial morphology defects can be functionally uncoupled from other pleiotropic effects of OPA1 loss. Graphical Abstract Phenotypic screening of OPA1 patient fibroblasts identifies multiple genetic suppressors of mitochondrial fragmentation including PGS1, a key enzyme in cardiolipin biosynthesis. PGS1 depletion reduces mitochondrial fission and restores normal mitochondrial morphology to OPA1‐deficient fibroblasts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34014035</pmid><doi>10.15252/emmm.202013579</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-0802-4608</orcidid><orcidid>https://orcid.org/0000-0003-1250-1462</orcidid><orcidid>https://orcid.org/0000-0002-2922-3625</orcidid><orcidid>https://orcid.org/0000-0001-7847-9320</orcidid><orcidid>https://orcid.org/0000-0001-5981-9166</orcidid><orcidid>https://orcid.org/0000-0002-6770-6222</orcidid><orcidid>https://orcid.org/0000-0002-8423-233X</orcidid><orcidid>https://orcid.org/0000-0003-0003-0587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-4676
ispartof EMBO molecular medicine, 2021-06, Vol.13 (6), p.e13579-n/a
issn 1757-4676
1757-4684
language eng
recordid cdi_proquest_miscellaneous_2529944202
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Apoptosis
Atrophy
Bacteriology
Biochemistry
Biochemistry, Molecular Biology
Biophysics
Cell viability
Cristae
Disease
DNA, Mitochondrial - genetics
EMBO16
EMBO27
EMBO57
Fibroblasts
genetic modifiers
GTP Phosphohydrolases - genetics
High-Throughput Screening Assays
high‐throughput screening
Humans
Life Sciences
Lipid metabolism
Machine learning
Microbiology and Parasitology
Microscopy
Mitochondria
Mitochondrial DNA
mitochondrial dynamics
Molecular biology
Morphology
Mutation
Neurological diseases
OPA1
Optic atrophy
Optic Atrophy, Autosomal Dominant
Patients
Phenotypes
phospholipid metabolism
Pipelines
Protein synthesis
Proteins
Proteomes
Structural Biology
Virology
title High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90throughput%20screening%20identifies%20suppressors%20of%20mitochondrial%20fragmentation%20in%20OPA1%20fibroblasts&rft.jtitle=EMBO%20molecular%20medicine&rft.au=Cretin,%20Emma&rft.date=2021-06-07&rft.volume=13&rft.issue=6&rft.spage=e13579&rft.epage=n/a&rft.pages=e13579-n/a&rft.issn=1757-4676&rft.eissn=1757-4684&rft_id=info:doi/10.15252/emmm.202013579&rft_dat=%3Cproquest_doaj_%3E2529944202%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537907160&rft_id=info:pmid/34014035&rft_doaj_id=oai_doaj_org_article_0f7ab26593fd4ea9a7b36b1989bf8ee6&rfr_iscdi=true