Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe

Tip-enhanced Raman spectroscopy (TERS) is a nano-optical approach to extract spatially resolved chemical information with nanometer precision. However, in the case of direct-illumination TERS, which is often employed in commercial TERS instruments, strong fluorescence or far-field Raman signals from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-06, Vol.93 (21), p.7699-7706
Hauptverfasser: Zhang, Kaifeng, Bao, Yifan, Cao, Maofeng, Taniguchi, Shin-ichi, Watanabe, Masahiro, Kambayashi, Takuya, Okamoto, Toshihiro, Haraguchi, Masanobu, Wang, Xiang, Kobayashi, Kei, Yamada, Hirofumi, Ren, Bin, Tachizaki, Takehiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7706
container_issue 21
container_start_page 7699
container_title Analytical chemistry (Washington)
container_volume 93
creator Zhang, Kaifeng
Bao, Yifan
Cao, Maofeng
Taniguchi, Shin-ichi
Watanabe, Masahiro
Kambayashi, Takuya
Okamoto, Toshihiro
Haraguchi, Masanobu
Wang, Xiang
Kobayashi, Kei
Yamada, Hirofumi
Ren, Bin
Tachizaki, Takehiro
description Tip-enhanced Raman spectroscopy (TERS) is a nano-optical approach to extract spatially resolved chemical information with nanometer precision. However, in the case of direct-illumination TERS, which is often employed in commercial TERS instruments, strong fluorescence or far-field Raman signals from the illuminated areas may be excited as a background. They may overwhelm the near-field TERS signal and dramatically decrease the near-field to far-field signal contrast of TERS spectra. It is still challenging for TERS to study the surface of fluorescent materials or a bulk sample that cannot be placed on an Au/Ag substrate. In this study, we developed an indirect-illumination TERS probe that allows a laser to be focused on a flat interface of a thin-film waveguide located far away from the region generating the TERS signal. Surface plasmon polaritons are generated stably on the waveguide and eventually accumulated at the tip apex, thereby producing a spatially and energetically confined hotspot to ensure stable and high-resolution TERS measurements with a low background. With this thin-film waveguide probe, TERS spectra with obvious contrast from a diamond plate can be acquired. Furthermore, the TERS technique based on this probe exhibits excellent TERS signal stability, a long lifetime, and good spatial resolution. This technique is expected to have commercial potential and enable further popularization and development of TERS technology as a powerful analytical method.
doi_str_mv 10.1021/acs.analchem.1c00806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2529943198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543839647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-978a907eb4cf075caf416acc802765a0f79cfc2171a5d9f3957f0827eb8707ba3</originalsourceid><addsrcrecordid>eNp9kEFP2zAUx60JtHZs32CaLHHhkvLsOLF93FDZJlUCQSdOKHpxnDYssUPcgPrtcdXCgQOnd3i____p_Qj5zmDGgLNzNGGGDluztt2MGQAF-ScyZRmHJFeKH5EpAKQJlwAT8iWEBwDGgOWfySQVwAQoPSX3C_-c_ELzfzX40VV02fTJ3K3RGVvRG-zQ0dvems3gg_H9ls4dlm1clVuK9LrF0HlHl-vGJZdN29E7fLKrsaksvR58ab-S4xrbYL8d5gn5dzlfXvxJFle__178XCQoBN8kWirUIG0pTA0yM1gLlqMxCrjMM4RaalMbziTDrNJ1qjNZg-IxoCTIEtMTcrbv7Qf_ONqwKbomGNu26KwfQ8EzrrVImVYRPX2HPvhxiB53lEhVqnMhIyX2lImPh8HWRT80HQ7bgkGx019E_cWr_uKgP8Z-HMrHsrPVW-jVdwRgD-zib4c_7HwB1oKTAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543839647</pqid></control><display><type>article</type><title>Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe</title><source>ACS Publications</source><creator>Zhang, Kaifeng ; Bao, Yifan ; Cao, Maofeng ; Taniguchi, Shin-ichi ; Watanabe, Masahiro ; Kambayashi, Takuya ; Okamoto, Toshihiro ; Haraguchi, Masanobu ; Wang, Xiang ; Kobayashi, Kei ; Yamada, Hirofumi ; Ren, Bin ; Tachizaki, Takehiro</creator><creatorcontrib>Zhang, Kaifeng ; Bao, Yifan ; Cao, Maofeng ; Taniguchi, Shin-ichi ; Watanabe, Masahiro ; Kambayashi, Takuya ; Okamoto, Toshihiro ; Haraguchi, Masanobu ; Wang, Xiang ; Kobayashi, Kei ; Yamada, Hirofumi ; Ren, Bin ; Tachizaki, Takehiro</creatorcontrib><description>Tip-enhanced Raman spectroscopy (TERS) is a nano-optical approach to extract spatially resolved chemical information with nanometer precision. However, in the case of direct-illumination TERS, which is often employed in commercial TERS instruments, strong fluorescence or far-field Raman signals from the illuminated areas may be excited as a background. They may overwhelm the near-field TERS signal and dramatically decrease the near-field to far-field signal contrast of TERS spectra. It is still challenging for TERS to study the surface of fluorescent materials or a bulk sample that cannot be placed on an Au/Ag substrate. In this study, we developed an indirect-illumination TERS probe that allows a laser to be focused on a flat interface of a thin-film waveguide located far away from the region generating the TERS signal. Surface plasmon polaritons are generated stably on the waveguide and eventually accumulated at the tip apex, thereby producing a spatially and energetically confined hotspot to ensure stable and high-resolution TERS measurements with a low background. With this thin-film waveguide probe, TERS spectra with obvious contrast from a diamond plate can be acquired. Furthermore, the TERS technique based on this probe exhibits excellent TERS signal stability, a long lifetime, and good spatial resolution. This technique is expected to have commercial potential and enable further popularization and development of TERS technology as a powerful analytical method.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c00806</identifier><identifier>PMID: 34014089</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Diamonds ; Far fields ; Fluorescence ; Gold ; Illumination ; Information processing ; Near fields ; Polaritons ; Raman spectroscopy ; Silver ; Spatial discrimination ; Spatial resolution ; Spectroscopy ; Spectrum analysis ; Substrates ; Technology assessment ; Thin films ; Waveguides</subject><ispartof>Analytical chemistry (Washington), 2021-06, Vol.93 (21), p.7699-7706</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-978a907eb4cf075caf416acc802765a0f79cfc2171a5d9f3957f0827eb8707ba3</citedby><cites>FETCH-LOGICAL-a442t-978a907eb4cf075caf416acc802765a0f79cfc2171a5d9f3957f0827eb8707ba3</cites><orcidid>0000-0002-1409-6539 ; 0000-0002-8659-1619 ; 0000-0002-9821-5864 ; 0000-0001-9163-5252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c00806$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c00806$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34014089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kaifeng</creatorcontrib><creatorcontrib>Bao, Yifan</creatorcontrib><creatorcontrib>Cao, Maofeng</creatorcontrib><creatorcontrib>Taniguchi, Shin-ichi</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Kambayashi, Takuya</creatorcontrib><creatorcontrib>Okamoto, Toshihiro</creatorcontrib><creatorcontrib>Haraguchi, Masanobu</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Kobayashi, Kei</creatorcontrib><creatorcontrib>Yamada, Hirofumi</creatorcontrib><creatorcontrib>Ren, Bin</creatorcontrib><creatorcontrib>Tachizaki, Takehiro</creatorcontrib><title>Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Tip-enhanced Raman spectroscopy (TERS) is a nano-optical approach to extract spatially resolved chemical information with nanometer precision. However, in the case of direct-illumination TERS, which is often employed in commercial TERS instruments, strong fluorescence or far-field Raman signals from the illuminated areas may be excited as a background. They may overwhelm the near-field TERS signal and dramatically decrease the near-field to far-field signal contrast of TERS spectra. It is still challenging for TERS to study the surface of fluorescent materials or a bulk sample that cannot be placed on an Au/Ag substrate. In this study, we developed an indirect-illumination TERS probe that allows a laser to be focused on a flat interface of a thin-film waveguide located far away from the region generating the TERS signal. Surface plasmon polaritons are generated stably on the waveguide and eventually accumulated at the tip apex, thereby producing a spatially and energetically confined hotspot to ensure stable and high-resolution TERS measurements with a low background. With this thin-film waveguide probe, TERS spectra with obvious contrast from a diamond plate can be acquired. Furthermore, the TERS technique based on this probe exhibits excellent TERS signal stability, a long lifetime, and good spatial resolution. This technique is expected to have commercial potential and enable further popularization and development of TERS technology as a powerful analytical method.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Diamonds</subject><subject>Far fields</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Illumination</subject><subject>Information processing</subject><subject>Near fields</subject><subject>Polaritons</subject><subject>Raman spectroscopy</subject><subject>Silver</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Technology assessment</subject><subject>Thin films</subject><subject>Waveguides</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP2zAUx60JtHZs32CaLHHhkvLsOLF93FDZJlUCQSdOKHpxnDYssUPcgPrtcdXCgQOnd3i____p_Qj5zmDGgLNzNGGGDluztt2MGQAF-ScyZRmHJFeKH5EpAKQJlwAT8iWEBwDGgOWfySQVwAQoPSX3C_-c_ELzfzX40VV02fTJ3K3RGVvRG-zQ0dvems3gg_H9ls4dlm1clVuK9LrF0HlHl-vGJZdN29E7fLKrsaksvR58ab-S4xrbYL8d5gn5dzlfXvxJFle__178XCQoBN8kWirUIG0pTA0yM1gLlqMxCrjMM4RaalMbziTDrNJ1qjNZg-IxoCTIEtMTcrbv7Qf_ONqwKbomGNu26KwfQ8EzrrVImVYRPX2HPvhxiB53lEhVqnMhIyX2lImPh8HWRT80HQ7bgkGx019E_cWr_uKgP8Z-HMrHsrPVW-jVdwRgD-zib4c_7HwB1oKTAw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Kaifeng</creator><creator>Bao, Yifan</creator><creator>Cao, Maofeng</creator><creator>Taniguchi, Shin-ichi</creator><creator>Watanabe, Masahiro</creator><creator>Kambayashi, Takuya</creator><creator>Okamoto, Toshihiro</creator><creator>Haraguchi, Masanobu</creator><creator>Wang, Xiang</creator><creator>Kobayashi, Kei</creator><creator>Yamada, Hirofumi</creator><creator>Ren, Bin</creator><creator>Tachizaki, Takehiro</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1409-6539</orcidid><orcidid>https://orcid.org/0000-0002-8659-1619</orcidid><orcidid>https://orcid.org/0000-0002-9821-5864</orcidid><orcidid>https://orcid.org/0000-0001-9163-5252</orcidid></search><sort><creationdate>20210601</creationdate><title>Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe</title><author>Zhang, Kaifeng ; Bao, Yifan ; Cao, Maofeng ; Taniguchi, Shin-ichi ; Watanabe, Masahiro ; Kambayashi, Takuya ; Okamoto, Toshihiro ; Haraguchi, Masanobu ; Wang, Xiang ; Kobayashi, Kei ; Yamada, Hirofumi ; Ren, Bin ; Tachizaki, Takehiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-978a907eb4cf075caf416acc802765a0f79cfc2171a5d9f3957f0827eb8707ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Diamonds</topic><topic>Far fields</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Illumination</topic><topic>Information processing</topic><topic>Near fields</topic><topic>Polaritons</topic><topic>Raman spectroscopy</topic><topic>Silver</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Technology assessment</topic><topic>Thin films</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kaifeng</creatorcontrib><creatorcontrib>Bao, Yifan</creatorcontrib><creatorcontrib>Cao, Maofeng</creatorcontrib><creatorcontrib>Taniguchi, Shin-ichi</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Kambayashi, Takuya</creatorcontrib><creatorcontrib>Okamoto, Toshihiro</creatorcontrib><creatorcontrib>Haraguchi, Masanobu</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Kobayashi, Kei</creatorcontrib><creatorcontrib>Yamada, Hirofumi</creatorcontrib><creatorcontrib>Ren, Bin</creatorcontrib><creatorcontrib>Tachizaki, Takehiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kaifeng</au><au>Bao, Yifan</au><au>Cao, Maofeng</au><au>Taniguchi, Shin-ichi</au><au>Watanabe, Masahiro</au><au>Kambayashi, Takuya</au><au>Okamoto, Toshihiro</au><au>Haraguchi, Masanobu</au><au>Wang, Xiang</au><au>Kobayashi, Kei</au><au>Yamada, Hirofumi</au><au>Ren, Bin</au><au>Tachizaki, Takehiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>93</volume><issue>21</issue><spage>7699</spage><epage>7706</epage><pages>7699-7706</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Tip-enhanced Raman spectroscopy (TERS) is a nano-optical approach to extract spatially resolved chemical information with nanometer precision. However, in the case of direct-illumination TERS, which is often employed in commercial TERS instruments, strong fluorescence or far-field Raman signals from the illuminated areas may be excited as a background. They may overwhelm the near-field TERS signal and dramatically decrease the near-field to far-field signal contrast of TERS spectra. It is still challenging for TERS to study the surface of fluorescent materials or a bulk sample that cannot be placed on an Au/Ag substrate. In this study, we developed an indirect-illumination TERS probe that allows a laser to be focused on a flat interface of a thin-film waveguide located far away from the region generating the TERS signal. Surface plasmon polaritons are generated stably on the waveguide and eventually accumulated at the tip apex, thereby producing a spatially and energetically confined hotspot to ensure stable and high-resolution TERS measurements with a low background. With this thin-film waveguide probe, TERS spectra with obvious contrast from a diamond plate can be acquired. Furthermore, the TERS technique based on this probe exhibits excellent TERS signal stability, a long lifetime, and good spatial resolution. This technique is expected to have commercial potential and enable further popularization and development of TERS technology as a powerful analytical method.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34014089</pmid><doi>10.1021/acs.analchem.1c00806</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1409-6539</orcidid><orcidid>https://orcid.org/0000-0002-8659-1619</orcidid><orcidid>https://orcid.org/0000-0002-9821-5864</orcidid><orcidid>https://orcid.org/0000-0001-9163-5252</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-06, Vol.93 (21), p.7699-7706
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2529943198
source ACS Publications
subjects Analytical chemistry
Chemistry
Diamonds
Far fields
Fluorescence
Gold
Illumination
Information processing
Near fields
Polaritons
Raman spectroscopy
Silver
Spatial discrimination
Spatial resolution
Spectroscopy
Spectrum analysis
Substrates
Technology assessment
Thin films
Waveguides
title Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Background%20Tip-Enhanced%20Raman%20Spectroscopy%20Enabled%20by%20a%20Plasmon%20Thin-Film%20Waveguide%20Probe&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhang,%20Kaifeng&rft.date=2021-06-01&rft.volume=93&rft.issue=21&rft.spage=7699&rft.epage=7706&rft.pages=7699-7706&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c00806&rft_dat=%3Cproquest_cross%3E2543839647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543839647&rft_id=info:pmid/34014089&rfr_iscdi=true