Very weak bonds to artificial atoms formed by quantum corrals

We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-06, Vol.372 (6547), p.1196-1200
Hauptverfasser: Stilp, Fabian, Bereczuk, Andreas, Berwanger, Julian, Mundigl, Nadine, Richter, Klaus, Giessibl, Franz J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue 6547
container_start_page 1196
container_title Science (American Association for the Advancement of Science)
container_volume 372
creator Stilp, Fabian
Bereczuk, Andreas
Berwanger, Julian
Mundigl, Nadine
Richter, Klaus
Giessibl, Franz J.
description We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.
doi_str_mv 10.1126/science.abe2600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2529927822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529927822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</originalsourceid><addsrcrecordid>eNpd0D1PwzAQgGELgWgpzGzIEgtL2js7H_bAgCq-pEoswBrZjiOlNHFrJ0L997hqYGC6wc-drJeQa4Q5IssXwTS2M3autGU5wAmZIsgskQz4KZkC8DwRUGQTchHCGiC-SX5OJjwFBExxSu4_rd_Tb6u-qHZdFWjvqPJ9UzemURuqetcGWjvf2orqPd0NquuHlhrnvdqES3JWx2GvxjkjH0-P78uXZPX2_Lp8WCUm5axPilSkimlEAxYM5jXwTIhcqFwwkLZWDCWTKDjWush0xDlq5MxWlRER8xm5O97dercbbOjLtgnGbjaqs24IJcuYlKwQjEV6-4-u3eC7-LuDyiUCKw5qcVTGuxC8rcutb1rl9yVCeShbjmXLsWzcuBnvDjrG-PO_KfkP0Zl0PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526910272</pqid></control><display><type>article</type><title>Very weak bonds to artificial atoms formed by quantum corrals</title><source>American Association for the Advancement of Science</source><creator>Stilp, Fabian ; Bereczuk, Andreas ; Berwanger, Julian ; Mundigl, Nadine ; Richter, Klaus ; Giessibl, Franz J.</creator><creatorcontrib>Stilp, Fabian ; Bereczuk, Andreas ; Berwanger, Julian ; Mundigl, Nadine ; Richter, Klaus ; Giessibl, Franz J.</creatorcontrib><description>We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abe2600</identifier><identifier>PMID: 34010141</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Atomic force microscopy ; Bonding strength ; Chemical bonds ; Copper ; Energy ; Iron ; Laboratory Equipment ; Microscopes ; Quantum dots</subject><ispartof>Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1196-1200</ispartof><rights>Copyright © 2021, American Association for the Advancement of Science.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</citedby><cites>FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</cites><orcidid>0000-0003-0679-246X ; 0000-0002-1927-9510 ; 0000-0003-4167-1225 ; 0000-0002-5585-1326 ; 0000-0003-1279-1658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34010141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stilp, Fabian</creatorcontrib><creatorcontrib>Bereczuk, Andreas</creatorcontrib><creatorcontrib>Berwanger, Julian</creatorcontrib><creatorcontrib>Mundigl, Nadine</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Giessibl, Franz J.</creatorcontrib><title>Very weak bonds to artificial atoms formed by quantum corrals</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.</description><subject>Atomic force microscopy</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Copper</subject><subject>Energy</subject><subject>Iron</subject><subject>Laboratory Equipment</subject><subject>Microscopes</subject><subject>Quantum dots</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQgGELgWgpzGzIEgtL2js7H_bAgCq-pEoswBrZjiOlNHFrJ0L997hqYGC6wc-drJeQa4Q5IssXwTS2M3autGU5wAmZIsgskQz4KZkC8DwRUGQTchHCGiC-SX5OJjwFBExxSu4_rd_Tb6u-qHZdFWjvqPJ9UzemURuqetcGWjvf2orqPd0NquuHlhrnvdqES3JWx2GvxjkjH0-P78uXZPX2_Lp8WCUm5axPilSkimlEAxYM5jXwTIhcqFwwkLZWDCWTKDjWush0xDlq5MxWlRER8xm5O97dercbbOjLtgnGbjaqs24IJcuYlKwQjEV6-4-u3eC7-LuDyiUCKw5qcVTGuxC8rcutb1rl9yVCeShbjmXLsWzcuBnvDjrG-PO_KfkP0Zl0PA</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Stilp, Fabian</creator><creator>Bereczuk, Andreas</creator><creator>Berwanger, Julian</creator><creator>Mundigl, Nadine</creator><creator>Richter, Klaus</creator><creator>Giessibl, Franz J.</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0679-246X</orcidid><orcidid>https://orcid.org/0000-0002-1927-9510</orcidid><orcidid>https://orcid.org/0000-0003-4167-1225</orcidid><orcidid>https://orcid.org/0000-0002-5585-1326</orcidid><orcidid>https://orcid.org/0000-0003-1279-1658</orcidid></search><sort><creationdate>20210611</creationdate><title>Very weak bonds to artificial atoms formed by quantum corrals</title><author>Stilp, Fabian ; Bereczuk, Andreas ; Berwanger, Julian ; Mundigl, Nadine ; Richter, Klaus ; Giessibl, Franz J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Copper</topic><topic>Energy</topic><topic>Iron</topic><topic>Laboratory Equipment</topic><topic>Microscopes</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stilp, Fabian</creatorcontrib><creatorcontrib>Bereczuk, Andreas</creatorcontrib><creatorcontrib>Berwanger, Julian</creatorcontrib><creatorcontrib>Mundigl, Nadine</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Giessibl, Franz J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stilp, Fabian</au><au>Bereczuk, Andreas</au><au>Berwanger, Julian</au><au>Mundigl, Nadine</au><au>Richter, Klaus</au><au>Giessibl, Franz J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very weak bonds to artificial atoms formed by quantum corrals</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-06-11</date><risdate>2021</risdate><volume>372</volume><issue>6547</issue><spage>1196</spage><epage>1200</epage><pages>1196-1200</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>34010141</pmid><doi>10.1126/science.abe2600</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0679-246X</orcidid><orcidid>https://orcid.org/0000-0002-1927-9510</orcidid><orcidid>https://orcid.org/0000-0003-4167-1225</orcidid><orcidid>https://orcid.org/0000-0002-5585-1326</orcidid><orcidid>https://orcid.org/0000-0003-1279-1658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1196-1200
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2529927822
source American Association for the Advancement of Science
subjects Atomic force microscopy
Bonding strength
Chemical bonds
Copper
Energy
Iron
Laboratory Equipment
Microscopes
Quantum dots
title Very weak bonds to artificial atoms formed by quantum corrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20weak%20bonds%20to%20artificial%20atoms%20formed%20by%20quantum%20corrals&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Stilp,%20Fabian&rft.date=2021-06-11&rft.volume=372&rft.issue=6547&rft.spage=1196&rft.epage=1200&rft.pages=1196-1200&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abe2600&rft_dat=%3Cproquest_cross%3E2529927822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526910272&rft_id=info:pmid/34010141&rfr_iscdi=true