Very weak bonds to artificial atoms formed by quantum corrals
We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 d...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-06, Vol.372 (6547), p.1196-1200 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1200 |
---|---|
container_issue | 6547 |
container_start_page | 1196 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 372 |
creator | Stilp, Fabian Bereczuk, Andreas Berwanger, Julian Mundigl, Nadine Richter, Klaus Giessibl, Franz J. |
description | We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral. |
doi_str_mv | 10.1126/science.abe2600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2529927822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529927822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</originalsourceid><addsrcrecordid>eNpd0D1PwzAQgGELgWgpzGzIEgtL2js7H_bAgCq-pEoswBrZjiOlNHFrJ0L997hqYGC6wc-drJeQa4Q5IssXwTS2M3autGU5wAmZIsgskQz4KZkC8DwRUGQTchHCGiC-SX5OJjwFBExxSu4_rd_Tb6u-qHZdFWjvqPJ9UzemURuqetcGWjvf2orqPd0NquuHlhrnvdqES3JWx2GvxjkjH0-P78uXZPX2_Lp8WCUm5axPilSkimlEAxYM5jXwTIhcqFwwkLZWDCWTKDjWush0xDlq5MxWlRER8xm5O97dercbbOjLtgnGbjaqs24IJcuYlKwQjEV6-4-u3eC7-LuDyiUCKw5qcVTGuxC8rcutb1rl9yVCeShbjmXLsWzcuBnvDjrG-PO_KfkP0Zl0PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526910272</pqid></control><display><type>article</type><title>Very weak bonds to artificial atoms formed by quantum corrals</title><source>American Association for the Advancement of Science</source><creator>Stilp, Fabian ; Bereczuk, Andreas ; Berwanger, Julian ; Mundigl, Nadine ; Richter, Klaus ; Giessibl, Franz J.</creator><creatorcontrib>Stilp, Fabian ; Bereczuk, Andreas ; Berwanger, Julian ; Mundigl, Nadine ; Richter, Klaus ; Giessibl, Franz J.</creatorcontrib><description>We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abe2600</identifier><identifier>PMID: 34010141</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Atomic force microscopy ; Bonding strength ; Chemical bonds ; Copper ; Energy ; Iron ; Laboratory Equipment ; Microscopes ; Quantum dots</subject><ispartof>Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1196-1200</ispartof><rights>Copyright © 2021, American Association for the Advancement of Science.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</citedby><cites>FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</cites><orcidid>0000-0003-0679-246X ; 0000-0002-1927-9510 ; 0000-0003-4167-1225 ; 0000-0002-5585-1326 ; 0000-0003-1279-1658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34010141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stilp, Fabian</creatorcontrib><creatorcontrib>Bereczuk, Andreas</creatorcontrib><creatorcontrib>Berwanger, Julian</creatorcontrib><creatorcontrib>Mundigl, Nadine</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Giessibl, Franz J.</creatorcontrib><title>Very weak bonds to artificial atoms formed by quantum corrals</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.</description><subject>Atomic force microscopy</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Copper</subject><subject>Energy</subject><subject>Iron</subject><subject>Laboratory Equipment</subject><subject>Microscopes</subject><subject>Quantum dots</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQgGELgWgpzGzIEgtL2js7H_bAgCq-pEoswBrZjiOlNHFrJ0L997hqYGC6wc-drJeQa4Q5IssXwTS2M3autGU5wAmZIsgskQz4KZkC8DwRUGQTchHCGiC-SX5OJjwFBExxSu4_rd_Tb6u-qHZdFWjvqPJ9UzemURuqetcGWjvf2orqPd0NquuHlhrnvdqES3JWx2GvxjkjH0-P78uXZPX2_Lp8WCUm5axPilSkimlEAxYM5jXwTIhcqFwwkLZWDCWTKDjWush0xDlq5MxWlRER8xm5O97dercbbOjLtgnGbjaqs24IJcuYlKwQjEV6-4-u3eC7-LuDyiUCKw5qcVTGuxC8rcutb1rl9yVCeShbjmXLsWzcuBnvDjrG-PO_KfkP0Zl0PA</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Stilp, Fabian</creator><creator>Bereczuk, Andreas</creator><creator>Berwanger, Julian</creator><creator>Mundigl, Nadine</creator><creator>Richter, Klaus</creator><creator>Giessibl, Franz J.</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0679-246X</orcidid><orcidid>https://orcid.org/0000-0002-1927-9510</orcidid><orcidid>https://orcid.org/0000-0003-4167-1225</orcidid><orcidid>https://orcid.org/0000-0002-5585-1326</orcidid><orcidid>https://orcid.org/0000-0003-1279-1658</orcidid></search><sort><creationdate>20210611</creationdate><title>Very weak bonds to artificial atoms formed by quantum corrals</title><author>Stilp, Fabian ; Bereczuk, Andreas ; Berwanger, Julian ; Mundigl, Nadine ; Richter, Klaus ; Giessibl, Franz J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7484a2b11c0e0c16f0358868a68209efa219291831fb75b84a61b132eddc8f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Copper</topic><topic>Energy</topic><topic>Iron</topic><topic>Laboratory Equipment</topic><topic>Microscopes</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stilp, Fabian</creatorcontrib><creatorcontrib>Bereczuk, Andreas</creatorcontrib><creatorcontrib>Berwanger, Julian</creatorcontrib><creatorcontrib>Mundigl, Nadine</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><creatorcontrib>Giessibl, Franz J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stilp, Fabian</au><au>Bereczuk, Andreas</au><au>Berwanger, Julian</au><au>Mundigl, Nadine</au><au>Richter, Klaus</au><au>Giessibl, Franz J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very weak bonds to artificial atoms formed by quantum corrals</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-06-11</date><risdate>2021</risdate><volume>372</volume><issue>6547</issue><spage>1196</spage><epage>1200</epage><pages>1196-1200</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>34010141</pmid><doi>10.1126/science.abe2600</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0679-246X</orcidid><orcidid>https://orcid.org/0000-0002-1927-9510</orcidid><orcidid>https://orcid.org/0000-0003-4167-1225</orcidid><orcidid>https://orcid.org/0000-0002-5585-1326</orcidid><orcidid>https://orcid.org/0000-0003-1279-1658</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6547), p.1196-1200 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2529927822 |
source | American Association for the Advancement of Science |
subjects | Atomic force microscopy Bonding strength Chemical bonds Copper Energy Iron Laboratory Equipment Microscopes Quantum dots |
title | Very weak bonds to artificial atoms formed by quantum corrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20weak%20bonds%20to%20artificial%20atoms%20formed%20by%20quantum%20corrals&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Stilp,%20Fabian&rft.date=2021-06-11&rft.volume=372&rft.issue=6547&rft.spage=1196&rft.epage=1200&rft.pages=1196-1200&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abe2600&rft_dat=%3Cproquest_cross%3E2529927822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526910272&rft_id=info:pmid/34010141&rfr_iscdi=true |