Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams

Transmission electron microscopy and spectroscopy currently enable the acquisition of spatially resolved spectral information from a specimen by focusing electron beams down to a sub-angstrom spot and then analyzing the energy of the inelastically scattered electrons with few-meV energy resolution....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-06, Vol.15 (6), p.9890-9899
Hauptverfasser: Konečná, Andrea, Iyikanat, Fadil, García de Abajo, F. Javier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9899
container_issue 6
container_start_page 9890
container_title ACS nano
container_volume 15
creator Konečná, Andrea
Iyikanat, Fadil
García de Abajo, F. Javier
description Transmission electron microscopy and spectroscopy currently enable the acquisition of spatially resolved spectral information from a specimen by focusing electron beams down to a sub-angstrom spot and then analyzing the energy of the inelastically scattered electrons with few-meV energy resolution. This technique has recently been used to experimentally resolve vibrational modes in 2D materials emerging at mid-infrared frequencies. Here, on the basis of first-principles theory, we demonstrate the possibility of identifying single isotope atom impurities in a nanostructure through the trace that they leave in the spectral and spatial characteristics of the vibrational modes. Specifically, we examine a hexagonal boron nitride molecule as an example of application, in which the presence of a single isotope impurity is revealed through changes in the electron spectra, as well as in the space-, energy-, and momentum-resolved inelastic electron signal. We compare these results with conventional far-field spectroscopy, showing that electron beams offer superior spatial resolution combined with the ability to probe the complete set of vibrational modes, including those that are optically dark. Our study is relevant for the atomic-scale characterization of vibrational modes in materials of interest, including a detailed mapping of isotope distributions.
doi_str_mv 10.1021/acsnano.1c01071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528906922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528906922</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-ccc97e129ab6b8651081d6749c7c7aad63a891bd377712bc5d6de1729146e42a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EoqUwsyGPSCit7SR2MpaqQKUiBgqCKXqxXeoqiYOdCPXvCTR0Y3r3Sefe4SB0ScmYEkYnIH0FlR1TSSgR9AgNaRrygCT87fiQYzpAZ95vCYlFIvgpGoQRIZwkyRC9rzbauh22azxtbGlk8Cyh0PjV5A4aYyso8CPUtak-MFQKL7xtbK3xQumqMWsjfyH8ZZoNnhdaNq77bjWU_hydrKHw-qK_I_RyN1_NHoLl0_1iNl0GEIqoCaSUqdCUpZDzPOExJQlVXESpFFIAKB5CktJchUIIynIZK640FSylEdcRg3CErve7tbOfrfZNVhovdVFApW3rMxazJCU8ZaxDJ3tUOuu90-usdqYEt8soyX58Zr3PrPfZNa768TYvtTrwfwI74GYPdM1sa1vXCfP_zn0DVjyA6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528906922</pqid></control><display><type>article</type><title>Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams</title><source>American Chemical Society Journals</source><creator>Konečná, Andrea ; Iyikanat, Fadil ; García de Abajo, F. Javier</creator><creatorcontrib>Konečná, Andrea ; Iyikanat, Fadil ; García de Abajo, F. Javier</creatorcontrib><description>Transmission electron microscopy and spectroscopy currently enable the acquisition of spatially resolved spectral information from a specimen by focusing electron beams down to a sub-angstrom spot and then analyzing the energy of the inelastically scattered electrons with few-meV energy resolution. This technique has recently been used to experimentally resolve vibrational modes in 2D materials emerging at mid-infrared frequencies. Here, on the basis of first-principles theory, we demonstrate the possibility of identifying single isotope atom impurities in a nanostructure through the trace that they leave in the spectral and spatial characteristics of the vibrational modes. Specifically, we examine a hexagonal boron nitride molecule as an example of application, in which the presence of a single isotope impurity is revealed through changes in the electron spectra, as well as in the space-, energy-, and momentum-resolved inelastic electron signal. We compare these results with conventional far-field spectroscopy, showing that electron beams offer superior spatial resolution combined with the ability to probe the complete set of vibrational modes, including those that are optically dark. Our study is relevant for the atomic-scale characterization of vibrational modes in materials of interest, including a detailed mapping of isotope distributions.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c01071</identifier><identifier>PMID: 34006088</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-06, Vol.15 (6), p.9890-9899</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-ccc97e129ab6b8651081d6749c7c7aad63a891bd377712bc5d6de1729146e42a3</citedby><cites>FETCH-LOGICAL-a374t-ccc97e129ab6b8651081d6749c7c7aad63a891bd377712bc5d6de1729146e42a3</cites><orcidid>0000-0003-1786-3235 ; 0000-0002-4970-4565 ; 0000-0002-7423-5481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c01071$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c01071$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34006088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konečná, Andrea</creatorcontrib><creatorcontrib>Iyikanat, Fadil</creatorcontrib><creatorcontrib>García de Abajo, F. Javier</creatorcontrib><title>Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Transmission electron microscopy and spectroscopy currently enable the acquisition of spatially resolved spectral information from a specimen by focusing electron beams down to a sub-angstrom spot and then analyzing the energy of the inelastically scattered electrons with few-meV energy resolution. This technique has recently been used to experimentally resolve vibrational modes in 2D materials emerging at mid-infrared frequencies. Here, on the basis of first-principles theory, we demonstrate the possibility of identifying single isotope atom impurities in a nanostructure through the trace that they leave in the spectral and spatial characteristics of the vibrational modes. Specifically, we examine a hexagonal boron nitride molecule as an example of application, in which the presence of a single isotope impurity is revealed through changes in the electron spectra, as well as in the space-, energy-, and momentum-resolved inelastic electron signal. We compare these results with conventional far-field spectroscopy, showing that electron beams offer superior spatial resolution combined with the ability to probe the complete set of vibrational modes, including those that are optically dark. Our study is relevant for the atomic-scale characterization of vibrational modes in materials of interest, including a detailed mapping of isotope distributions.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EoqUwsyGPSCit7SR2MpaqQKUiBgqCKXqxXeoqiYOdCPXvCTR0Y3r3Sefe4SB0ScmYEkYnIH0FlR1TSSgR9AgNaRrygCT87fiQYzpAZ95vCYlFIvgpGoQRIZwkyRC9rzbauh22azxtbGlk8Cyh0PjV5A4aYyso8CPUtak-MFQKL7xtbK3xQumqMWsjfyH8ZZoNnhdaNq77bjWU_hydrKHw-qK_I_RyN1_NHoLl0_1iNl0GEIqoCaSUqdCUpZDzPOExJQlVXESpFFIAKB5CktJchUIIynIZK640FSylEdcRg3CErve7tbOfrfZNVhovdVFApW3rMxazJCU8ZaxDJ3tUOuu90-usdqYEt8soyX58Zr3PrPfZNa768TYvtTrwfwI74GYPdM1sa1vXCfP_zn0DVjyA6Q</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Konečná, Andrea</creator><creator>Iyikanat, Fadil</creator><creator>García de Abajo, F. Javier</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1786-3235</orcidid><orcidid>https://orcid.org/0000-0002-4970-4565</orcidid><orcidid>https://orcid.org/0000-0002-7423-5481</orcidid></search><sort><creationdate>20210622</creationdate><title>Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams</title><author>Konečná, Andrea ; Iyikanat, Fadil ; García de Abajo, F. Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-ccc97e129ab6b8651081d6749c7c7aad63a891bd377712bc5d6de1729146e42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konečná, Andrea</creatorcontrib><creatorcontrib>Iyikanat, Fadil</creatorcontrib><creatorcontrib>García de Abajo, F. Javier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konečná, Andrea</au><au>Iyikanat, Fadil</au><au>García de Abajo, F. Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>9890</spage><epage>9899</epage><pages>9890-9899</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Transmission electron microscopy and spectroscopy currently enable the acquisition of spatially resolved spectral information from a specimen by focusing electron beams down to a sub-angstrom spot and then analyzing the energy of the inelastically scattered electrons with few-meV energy resolution. This technique has recently been used to experimentally resolve vibrational modes in 2D materials emerging at mid-infrared frequencies. Here, on the basis of first-principles theory, we demonstrate the possibility of identifying single isotope atom impurities in a nanostructure through the trace that they leave in the spectral and spatial characteristics of the vibrational modes. Specifically, we examine a hexagonal boron nitride molecule as an example of application, in which the presence of a single isotope impurity is revealed through changes in the electron spectra, as well as in the space-, energy-, and momentum-resolved inelastic electron signal. We compare these results with conventional far-field spectroscopy, showing that electron beams offer superior spatial resolution combined with the ability to probe the complete set of vibrational modes, including those that are optically dark. Our study is relevant for the atomic-scale characterization of vibrational modes in materials of interest, including a detailed mapping of isotope distributions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34006088</pmid><doi>10.1021/acsnano.1c01071</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1786-3235</orcidid><orcidid>https://orcid.org/0000-0002-4970-4565</orcidid><orcidid>https://orcid.org/0000-0002-7423-5481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-06, Vol.15 (6), p.9890-9899
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2528906922
source American Chemical Society Journals
title Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Atomic-Scale%20Vibrational%20Mapping%20and%20Isotope%20Identification%20with%20Electron%20Beams&rft.jtitle=ACS%20nano&rft.au=Konec%CC%8Cna%CC%81,%20Andrea&rft.date=2021-06-22&rft.volume=15&rft.issue=6&rft.spage=9890&rft.epage=9899&rft.pages=9890-9899&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c01071&rft_dat=%3Cproquest_cross%3E2528906922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528906922&rft_id=info:pmid/34006088&rfr_iscdi=true