Tuning Exchange Coupling in NiO-Based Bimagnetic Heterostructured Nanocrystals

A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic Mn x Ni1–x O and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decompositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-05, Vol.13 (20), p.24013-24023
Hauptverfasser: Shafe, Abdullah Al, Hossain, Mohammad Delower, Mayanovic, Robert A, Roddatis, Vladimir, Benamara, Mourad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24023
container_issue 20
container_start_page 24013
container_title ACS applied materials & interfaces
container_volume 13
creator Shafe, Abdullah Al
Hossain, Mohammad Delower
Mayanovic, Robert A
Roddatis, Vladimir
Benamara, Mourad
description A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic Mn x Ni1–x O and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decomposition method to synthesize NiO nanoparticles, followed by growth of the Mn x Ni1–x O and/or Mn3O4 nanophase over the NiO core using hydrothermal synthesis at pH values ranging from 2.4–7.0. The environmentally benign hydrothermal process involves pH control of the protonation vs hydroxylation reactions occurring at the nanoparticle surface. TEM analysis and Rietveld refinement of XRD data show that three distinct types of heterostructured nanocrystals occur: NiO/Mn x Ni1–x O core–shell-like heterostructures at the pH of 2.4, mixed NiO/Mn x Ni1–x O and/or/Mn3O4 core-overgrowth structures for 2.4 < pH < 4.5, and predominantly NiO/Mn3O4 core-island structures for pH > 4.5. The magnetic coercivity and exchange bias of the heterostructured nanocrystals vary systematically with the pH of the aqueous solution used to synthesize the samples. The temperature-dependent magnetization and hysteresis loop data are consistent with the nature of overlayer coverage of the NiO core. Our DFT based calculations show that the Mn x Ni1–x O phase has ferrimagnetic properties with a stable spin orientation along the ⟨111⟩ orientation. Furthermore, the calculations show that the magnetic anisotropy constant (K 1) of the Mn3O4 phase is considerably larger than that of the Mn x Ni1–x O phase, which is confirmed by our experimental results. The coercivity and exchange bias field are the largest for the NiO/Mn3O4 core-island nanocrystals, synthesized at a pH value of 5.0, with robust values of nearly 6 kOe and 3 kOe, respectively. This work demonstrates the tunability of hydrothermal deposition, and concomitant magnetic coercivity and exchange bias properties, of Mn x Ni1–x O and/or Mn3O4 nanophase overgrowth over a NiO core with pH, that makes these heterostructured nanocrystals potentially useful for magnetic device, biomedical, and other applications.
doi_str_mv 10.1021/acsami.1c02855
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528818995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528818995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-4cb43654e12e57974016f40c21f8519455e021a0b1d3f5a53af0aadcb5378f103</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqWwMqKMCCnl_NUmI1SFIlXtUmbLceySKnGKHUv0v8dVSjemO9397uneQ-gewxgDwc9SedlUY6yAZJxfoCHOGUszwsnluWdsgG683wFMKAF-jQaUAQDO-RCtNsFWdpvMf9SXtFudzNqwr4-Tyiarap2-Sq_L5LVq5NbqrlLJQnfatb5zQXXBxd1K2la5g-9k7W_RlYlF353qCH2-zTezRbpcv3_MXpappBS6lKmC0QlnGhPNp_mUAZ4YBopgk_H4Nec6mpNQ4JIaLjmVBqQsVcHpNDMY6Ag99rp7134H7TvRVF7pupZWt8GL6D_LcJbnPKLjHlXxa--0EXsX3biDwCCOGYo-Q3HKMB48nLRD0ejyjP-FFoGnHoiHYtcGZ6PV_9R-AdFMez8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528818995</pqid></control><display><type>article</type><title>Tuning Exchange Coupling in NiO-Based Bimagnetic Heterostructured Nanocrystals</title><source>ACS Publications</source><creator>Shafe, Abdullah Al ; Hossain, Mohammad Delower ; Mayanovic, Robert A ; Roddatis, Vladimir ; Benamara, Mourad</creator><creatorcontrib>Shafe, Abdullah Al ; Hossain, Mohammad Delower ; Mayanovic, Robert A ; Roddatis, Vladimir ; Benamara, Mourad</creatorcontrib><description>A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic Mn x Ni1–x O and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decomposition method to synthesize NiO nanoparticles, followed by growth of the Mn x Ni1–x O and/or Mn3O4 nanophase over the NiO core using hydrothermal synthesis at pH values ranging from 2.4–7.0. The environmentally benign hydrothermal process involves pH control of the protonation vs hydroxylation reactions occurring at the nanoparticle surface. TEM analysis and Rietveld refinement of XRD data show that three distinct types of heterostructured nanocrystals occur: NiO/Mn x Ni1–x O core–shell-like heterostructures at the pH of 2.4, mixed NiO/Mn x Ni1–x O and/or/Mn3O4 core-overgrowth structures for 2.4 &lt; pH &lt; 4.5, and predominantly NiO/Mn3O4 core-island structures for pH &gt; 4.5. The magnetic coercivity and exchange bias of the heterostructured nanocrystals vary systematically with the pH of the aqueous solution used to synthesize the samples. The temperature-dependent magnetization and hysteresis loop data are consistent with the nature of overlayer coverage of the NiO core. Our DFT based calculations show that the Mn x Ni1–x O phase has ferrimagnetic properties with a stable spin orientation along the ⟨111⟩ orientation. Furthermore, the calculations show that the magnetic anisotropy constant (K 1) of the Mn3O4 phase is considerably larger than that of the Mn x Ni1–x O phase, which is confirmed by our experimental results. The coercivity and exchange bias field are the largest for the NiO/Mn3O4 core-island nanocrystals, synthesized at a pH value of 5.0, with robust values of nearly 6 kOe and 3 kOe, respectively. This work demonstrates the tunability of hydrothermal deposition, and concomitant magnetic coercivity and exchange bias properties, of Mn x Ni1–x O and/or Mn3O4 nanophase overgrowth over a NiO core with pH, that makes these heterostructured nanocrystals potentially useful for magnetic device, biomedical, and other applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c02855</identifier><identifier>PMID: 34000195</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2021-05, Vol.13 (20), p.24013-24023</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-4cb43654e12e57974016f40c21f8519455e021a0b1d3f5a53af0aadcb5378f103</citedby><cites>FETCH-LOGICAL-a330t-4cb43654e12e57974016f40c21f8519455e021a0b1d3f5a53af0aadcb5378f103</cites><orcidid>0000-0002-7923-7283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c02855$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c02855$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34000195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shafe, Abdullah Al</creatorcontrib><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Mayanovic, Robert A</creatorcontrib><creatorcontrib>Roddatis, Vladimir</creatorcontrib><creatorcontrib>Benamara, Mourad</creatorcontrib><title>Tuning Exchange Coupling in NiO-Based Bimagnetic Heterostructured Nanocrystals</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic Mn x Ni1–x O and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decomposition method to synthesize NiO nanoparticles, followed by growth of the Mn x Ni1–x O and/or Mn3O4 nanophase over the NiO core using hydrothermal synthesis at pH values ranging from 2.4–7.0. The environmentally benign hydrothermal process involves pH control of the protonation vs hydroxylation reactions occurring at the nanoparticle surface. TEM analysis and Rietveld refinement of XRD data show that three distinct types of heterostructured nanocrystals occur: NiO/Mn x Ni1–x O core–shell-like heterostructures at the pH of 2.4, mixed NiO/Mn x Ni1–x O and/or/Mn3O4 core-overgrowth structures for 2.4 &lt; pH &lt; 4.5, and predominantly NiO/Mn3O4 core-island structures for pH &gt; 4.5. The magnetic coercivity and exchange bias of the heterostructured nanocrystals vary systematically with the pH of the aqueous solution used to synthesize the samples. The temperature-dependent magnetization and hysteresis loop data are consistent with the nature of overlayer coverage of the NiO core. Our DFT based calculations show that the Mn x Ni1–x O phase has ferrimagnetic properties with a stable spin orientation along the ⟨111⟩ orientation. Furthermore, the calculations show that the magnetic anisotropy constant (K 1) of the Mn3O4 phase is considerably larger than that of the Mn x Ni1–x O phase, which is confirmed by our experimental results. The coercivity and exchange bias field are the largest for the NiO/Mn3O4 core-island nanocrystals, synthesized at a pH value of 5.0, with robust values of nearly 6 kOe and 3 kOe, respectively. This work demonstrates the tunability of hydrothermal deposition, and concomitant magnetic coercivity and exchange bias properties, of Mn x Ni1–x O and/or Mn3O4 nanophase overgrowth over a NiO core with pH, that makes these heterostructured nanocrystals potentially useful for magnetic device, biomedical, and other applications.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqWwMqKMCCnl_NUmI1SFIlXtUmbLceySKnGKHUv0v8dVSjemO9397uneQ-gewxgDwc9SedlUY6yAZJxfoCHOGUszwsnluWdsgG683wFMKAF-jQaUAQDO-RCtNsFWdpvMf9SXtFudzNqwr4-Tyiarap2-Sq_L5LVq5NbqrlLJQnfatb5zQXXBxd1K2la5g-9k7W_RlYlF353qCH2-zTezRbpcv3_MXpappBS6lKmC0QlnGhPNp_mUAZ4YBopgk_H4Nec6mpNQ4JIaLjmVBqQsVcHpNDMY6Ag99rp7134H7TvRVF7pupZWt8GL6D_LcJbnPKLjHlXxa--0EXsX3biDwCCOGYo-Q3HKMB48nLRD0ejyjP-FFoGnHoiHYtcGZ6PV_9R-AdFMez8</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Shafe, Abdullah Al</creator><creator>Hossain, Mohammad Delower</creator><creator>Mayanovic, Robert A</creator><creator>Roddatis, Vladimir</creator><creator>Benamara, Mourad</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7923-7283</orcidid></search><sort><creationdate>20210526</creationdate><title>Tuning Exchange Coupling in NiO-Based Bimagnetic Heterostructured Nanocrystals</title><author>Shafe, Abdullah Al ; Hossain, Mohammad Delower ; Mayanovic, Robert A ; Roddatis, Vladimir ; Benamara, Mourad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-4cb43654e12e57974016f40c21f8519455e021a0b1d3f5a53af0aadcb5378f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafe, Abdullah Al</creatorcontrib><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Mayanovic, Robert A</creatorcontrib><creatorcontrib>Roddatis, Vladimir</creatorcontrib><creatorcontrib>Benamara, Mourad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafe, Abdullah Al</au><au>Hossain, Mohammad Delower</au><au>Mayanovic, Robert A</au><au>Roddatis, Vladimir</au><au>Benamara, Mourad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Exchange Coupling in NiO-Based Bimagnetic Heterostructured Nanocrystals</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-05-26</date><risdate>2021</risdate><volume>13</volume><issue>20</issue><spage>24013</spage><epage>24023</epage><pages>24013-24023</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic Mn x Ni1–x O and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decomposition method to synthesize NiO nanoparticles, followed by growth of the Mn x Ni1–x O and/or Mn3O4 nanophase over the NiO core using hydrothermal synthesis at pH values ranging from 2.4–7.0. The environmentally benign hydrothermal process involves pH control of the protonation vs hydroxylation reactions occurring at the nanoparticle surface. TEM analysis and Rietveld refinement of XRD data show that three distinct types of heterostructured nanocrystals occur: NiO/Mn x Ni1–x O core–shell-like heterostructures at the pH of 2.4, mixed NiO/Mn x Ni1–x O and/or/Mn3O4 core-overgrowth structures for 2.4 &lt; pH &lt; 4.5, and predominantly NiO/Mn3O4 core-island structures for pH &gt; 4.5. The magnetic coercivity and exchange bias of the heterostructured nanocrystals vary systematically with the pH of the aqueous solution used to synthesize the samples. The temperature-dependent magnetization and hysteresis loop data are consistent with the nature of overlayer coverage of the NiO core. Our DFT based calculations show that the Mn x Ni1–x O phase has ferrimagnetic properties with a stable spin orientation along the ⟨111⟩ orientation. Furthermore, the calculations show that the magnetic anisotropy constant (K 1) of the Mn3O4 phase is considerably larger than that of the Mn x Ni1–x O phase, which is confirmed by our experimental results. The coercivity and exchange bias field are the largest for the NiO/Mn3O4 core-island nanocrystals, synthesized at a pH value of 5.0, with robust values of nearly 6 kOe and 3 kOe, respectively. This work demonstrates the tunability of hydrothermal deposition, and concomitant magnetic coercivity and exchange bias properties, of Mn x Ni1–x O and/or Mn3O4 nanophase overgrowth over a NiO core with pH, that makes these heterostructured nanocrystals potentially useful for magnetic device, biomedical, and other applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34000195</pmid><doi>10.1021/acsami.1c02855</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7923-7283</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-05, Vol.13 (20), p.24013-24023
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2528818995
source ACS Publications
subjects Functional Nanostructured Materials (including low-D carbon)
title Tuning Exchange Coupling in NiO-Based Bimagnetic Heterostructured Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Exchange%20Coupling%20in%20NiO-Based%20Bimagnetic%20Heterostructured%20Nanocrystals&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shafe,%20Abdullah%20Al&rft.date=2021-05-26&rft.volume=13&rft.issue=20&rft.spage=24013&rft.epage=24023&rft.pages=24013-24023&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c02855&rft_dat=%3Cproquest_cross%3E2528818995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528818995&rft_id=info:pmid/34000195&rfr_iscdi=true