In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms

This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2021-06, Vol.27 (6), p.171-171, Article 171
Hauptverfasser: de la Garza, Cesar Gabriel Vera, Rodriguez, Luis Daniel Solis, Fomine, Serguei, Vallejo Narváez, Wilmer E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 6
container_start_page 171
container_title Journal of molecular modeling
container_volume 27
creator de la Garza, Cesar Gabriel Vera
Rodriguez, Luis Daniel Solis
Fomine, Serguei
Vallejo Narváez, Wilmer E.
description This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems. However, in Mfs, all heteroatoms generate a decrease in band gap and the ionization potentials (IP), and an increase in electron affinity (EA) in comparison with pristine phosphorene. Al doping improves the hole mobility in the phosphorene monoflake, while Si and S substitutions exhibit a similar behavior on EAs and reorganization energies. For Bfs, the presence of Si-Si and Al-P interlaminar interactions causes structural changes and higher binding energies for Si-Bfs and Al-Bfs. Regarding the electronic properties of Bfs, substitution with Si does not produce significant variations in the band gap. Nevertheless, it conduces the formation of hole transport materials, which does not occur in Si-Mfs. The same is observed for Al systems, whereas no correlation was identified between the doping level and reorganization energies for S complexes. The substitution with Al and S leads to an opposite behavior of the band gap and IP values, while the EA variation is similar. In summary, the nature of heteroatom and the doping degree can modify the semiconductor character and electronic properties of phosphorene mono- and biflakes, whose trends are closely related to the atomic properties considered. Overall, these computational calculations provide significant insights into the study of doped phosphorene materials. Graphical abstract
doi_str_mv 10.1007/s00894-021-04789-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528815267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528815267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-2d9305b7f4d5df9ee440d0146f09591e79d8976f4395dccdc99a6424fcde4b1c3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rDuH_AgAS8etrWSTjodb8vix8KCh9Vz6E4qO1m7O2OSRgb_vHFmVPDgIYRQT71V4SHkOYPXDEC9yQC9Fg1w1oBQvW72j8gGtOgbCbx9TDasY9BwLeCMXOT8AACMy05y_pSctQKAc8U25MfNQnOYgo10jg6nsNy_pTihLSkuwdJdijtMJWCm0dPdNuZ6Ei5Y8SX6afhaK8Pi6BhOj7yOuYSyFnT0eyhbejVd0rtweaDu6BYLpjiUOOdn5IkfpowXp_ucfHn_7vP1x-b204eb66vbxrZKloY73YIclRdOOq8RhQAHTHQetNQMlXa9Vp0XrZbOWme1HjrBhbcOxchse05eHXPrZ76tmIuZQ7Y4TcOCcc2GS973TPJOVfTlP-hDXNNStztQQtUhulL8SNkUc07ozS6FeUh7w8D8smOOdky1Yw52zL42vThFr-OM7k_LbxcVaI9ArqXlHtPf2f-J_Qk_XZvn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528474399</pqid></control><display><type>article</type><title>In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms</title><source>SpringerLink Journals - AutoHoldings</source><creator>de la Garza, Cesar Gabriel Vera ; Rodriguez, Luis Daniel Solis ; Fomine, Serguei ; Vallejo Narváez, Wilmer E.</creator><creatorcontrib>de la Garza, Cesar Gabriel Vera ; Rodriguez, Luis Daniel Solis ; Fomine, Serguei ; Vallejo Narváez, Wilmer E.</creatorcontrib><description>This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems. However, in Mfs, all heteroatoms generate a decrease in band gap and the ionization potentials (IP), and an increase in electron affinity (EA) in comparison with pristine phosphorene. Al doping improves the hole mobility in the phosphorene monoflake, while Si and S substitutions exhibit a similar behavior on EAs and reorganization energies. For Bfs, the presence of Si-Si and Al-P interlaminar interactions causes structural changes and higher binding energies for Si-Bfs and Al-Bfs. Regarding the electronic properties of Bfs, substitution with Si does not produce significant variations in the band gap. Nevertheless, it conduces the formation of hole transport materials, which does not occur in Si-Mfs. The same is observed for Al systems, whereas no correlation was identified between the doping level and reorganization energies for S complexes. The substitution with Al and S leads to an opposite behavior of the band gap and IP values, while the EA variation is similar. In summary, the nature of heteroatom and the doping degree can modify the semiconductor character and electronic properties of phosphorene mono- and biflakes, whose trends are closely related to the atomic properties considered. Overall, these computational calculations provide significant insights into the study of doped phosphorene materials. Graphical abstract</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-021-04789-y</identifier><identifier>PMID: 34002271</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Atomic properties ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Density functional theory ; Doping ; Electron affinity ; Electronic properties ; Energy gap ; Hole mobility ; Ionization potentials ; Molecular Medicine ; Original Paper ; Phosphorene ; Self consistent fields ; Silicon ; Substitutes ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2021-06, Vol.27 (6), p.171-171, Article 171</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-2d9305b7f4d5df9ee440d0146f09591e79d8976f4395dccdc99a6424fcde4b1c3</citedby><cites>FETCH-LOGICAL-c375t-2d9305b7f4d5df9ee440d0146f09591e79d8976f4395dccdc99a6424fcde4b1c3</cites><orcidid>0000-0002-3712-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-021-04789-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-021-04789-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34002271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de la Garza, Cesar Gabriel Vera</creatorcontrib><creatorcontrib>Rodriguez, Luis Daniel Solis</creatorcontrib><creatorcontrib>Fomine, Serguei</creatorcontrib><creatorcontrib>Vallejo Narváez, Wilmer E.</creatorcontrib><title>In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems. However, in Mfs, all heteroatoms generate a decrease in band gap and the ionization potentials (IP), and an increase in electron affinity (EA) in comparison with pristine phosphorene. Al doping improves the hole mobility in the phosphorene monoflake, while Si and S substitutions exhibit a similar behavior on EAs and reorganization energies. For Bfs, the presence of Si-Si and Al-P interlaminar interactions causes structural changes and higher binding energies for Si-Bfs and Al-Bfs. Regarding the electronic properties of Bfs, substitution with Si does not produce significant variations in the band gap. Nevertheless, it conduces the formation of hole transport materials, which does not occur in Si-Mfs. The same is observed for Al systems, whereas no correlation was identified between the doping level and reorganization energies for S complexes. The substitution with Al and S leads to an opposite behavior of the band gap and IP values, while the EA variation is similar. In summary, the nature of heteroatom and the doping degree can modify the semiconductor character and electronic properties of phosphorene mono- and biflakes, whose trends are closely related to the atomic properties considered. Overall, these computational calculations provide significant insights into the study of doped phosphorene materials. Graphical abstract</description><subject>Aluminum</subject><subject>Atomic properties</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electron affinity</subject><subject>Electronic properties</subject><subject>Energy gap</subject><subject>Hole mobility</subject><subject>Ionization potentials</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Phosphorene</subject><subject>Self consistent fields</subject><subject>Silicon</subject><subject>Substitutes</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7rDuH_AgAS8etrWSTjodb8vix8KCh9Vz6E4qO1m7O2OSRgb_vHFmVPDgIYRQT71V4SHkOYPXDEC9yQC9Fg1w1oBQvW72j8gGtOgbCbx9TDasY9BwLeCMXOT8AACMy05y_pSctQKAc8U25MfNQnOYgo10jg6nsNy_pTihLSkuwdJdijtMJWCm0dPdNuZ6Ei5Y8SX6afhaK8Pi6BhOj7yOuYSyFnT0eyhbejVd0rtweaDu6BYLpjiUOOdn5IkfpowXp_ucfHn_7vP1x-b204eb66vbxrZKloY73YIclRdOOq8RhQAHTHQetNQMlXa9Vp0XrZbOWme1HjrBhbcOxchse05eHXPrZ76tmIuZQ7Y4TcOCcc2GS973TPJOVfTlP-hDXNNStztQQtUhulL8SNkUc07ozS6FeUh7w8D8smOOdky1Yw52zL42vThFr-OM7k_LbxcVaI9ArqXlHtPf2f-J_Qk_XZvn</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>de la Garza, Cesar Gabriel Vera</creator><creator>Rodriguez, Luis Daniel Solis</creator><creator>Fomine, Serguei</creator><creator>Vallejo Narváez, Wilmer E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3712-0618</orcidid></search><sort><creationdate>20210601</creationdate><title>In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms</title><author>de la Garza, Cesar Gabriel Vera ; Rodriguez, Luis Daniel Solis ; Fomine, Serguei ; Vallejo Narváez, Wilmer E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-2d9305b7f4d5df9ee440d0146f09591e79d8976f4395dccdc99a6424fcde4b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Atomic properties</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electron affinity</topic><topic>Electronic properties</topic><topic>Energy gap</topic><topic>Hole mobility</topic><topic>Ionization potentials</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Phosphorene</topic><topic>Self consistent fields</topic><topic>Silicon</topic><topic>Substitutes</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Garza, Cesar Gabriel Vera</creatorcontrib><creatorcontrib>Rodriguez, Luis Daniel Solis</creatorcontrib><creatorcontrib>Fomine, Serguei</creatorcontrib><creatorcontrib>Vallejo Narváez, Wilmer E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Garza, Cesar Gabriel Vera</au><au>Rodriguez, Luis Daniel Solis</au><au>Fomine, Serguei</au><au>Vallejo Narváez, Wilmer E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>27</volume><issue>6</issue><spage>171</spage><epage>171</epage><pages>171-171</pages><artnum>171</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>This contribution explores the systematic substitution of phosphorene monoflakes (Mfs) and biflakes (Bfs) with aluminum, silicon, and sulfur. These systems were investigated using density functional theory employing the TPSS exchange-correlation functional and complete active space self-consistent field (CASSCF) calculations. Al and Si substitution produces significant structural changes in both Mfs and Bfs compared to S-substituted and pristine systems. However, in Mfs, all heteroatoms generate a decrease in band gap and the ionization potentials (IP), and an increase in electron affinity (EA) in comparison with pristine phosphorene. Al doping improves the hole mobility in the phosphorene monoflake, while Si and S substitutions exhibit a similar behavior on EAs and reorganization energies. For Bfs, the presence of Si-Si and Al-P interlaminar interactions causes structural changes and higher binding energies for Si-Bfs and Al-Bfs. Regarding the electronic properties of Bfs, substitution with Si does not produce significant variations in the band gap. Nevertheless, it conduces the formation of hole transport materials, which does not occur in Si-Mfs. The same is observed for Al systems, whereas no correlation was identified between the doping level and reorganization energies for S complexes. The substitution with Al and S leads to an opposite behavior of the band gap and IP values, while the EA variation is similar. In summary, the nature of heteroatom and the doping degree can modify the semiconductor character and electronic properties of phosphorene mono- and biflakes, whose trends are closely related to the atomic properties considered. Overall, these computational calculations provide significant insights into the study of doped phosphorene materials. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34002271</pmid><doi>10.1007/s00894-021-04789-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3712-0618</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2021-06, Vol.27 (6), p.171-171, Article 171
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2528815267
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Atomic properties
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Density functional theory
Doping
Electron affinity
Electronic properties
Energy gap
Hole mobility
Ionization potentials
Molecular Medicine
Original Paper
Phosphorene
Self consistent fields
Silicon
Substitutes
Theoretical and Computational Chemistry
title In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20modeling:%20electronic%20properties%20of%20phosphorene%20monoflakes%20and%20biflakes%20substituted%20with%20Al,%20Si,%20and%20S%20heteroatoms&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=de%20la%20Garza,%20Cesar%20Gabriel%20Vera&rft.date=2021-06-01&rft.volume=27&rft.issue=6&rft.spage=171&rft.epage=171&rft.pages=171-171&rft.artnum=171&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-021-04789-y&rft_dat=%3Cproquest_cross%3E2528815267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528474399&rft_id=info:pmid/34002271&rfr_iscdi=true