A Self‐Assembled Cage for Wide‐Scope Chiral Recognition in Water
Herein, we report the self‐assembly of an anionic homochiral octahedral cage by condensing six Ga3+ cations and four trisacylhydrazone ligands. The robust nature of the hydrazone bond renders the cage stable in water, where it can take advantage of the hydrophobic effect for host–guest recognition....
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-07, Vol.60 (30), p.16594-16599 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16599 |
---|---|
container_issue | 30 |
container_start_page | 16594 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Wu, Guangcheng Chen, Yixin Fang, Shuai Tong, Lu Shen, Libo Ge, Chenqi Pan, Yuanjiang Shi, Xiangli Li, Hao |
description | Herein, we report the self‐assembly of an anionic homochiral octahedral cage by condensing six Ga3+ cations and four trisacylhydrazone ligands. The robust nature of the hydrazone bond renders the cage stable in water, where it can take advantage of the hydrophobic effect for host–guest recognition. In addition to the internal binding site, namely, the inner cavity, the octahedral cage possesses four “windows”, each of which represents an external binding site allowing peripheral complexation. These internal and external binding sites endow the cage with the capability to bind a broad range of guests whose sizes could either be smaller than or exceed the volume of the cage′s inner cavity. Upon accommodation of a chiral guest, one of the two cage enantiomers becomes more favored than the other, producing circular‐dichroism (CD) signals. The CD signal intensity of the cage is observed to be proportional to the ee value of the chiral guest, allowing a quantitative determination of the latter.
A self‐assembled homochiral anionic cage with dual binding modes acts as an efficient chiroptical sensor with a broad substrate scope in water. |
doi_str_mv | 10.1002/anie.202104164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528814621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528814621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-a01d679a7c2b9ed4b2cf1973b68f43fe50535db47eb5895ed4eb303172a7f9f93</originalsourceid><addsrcrecordid>eNqF0E1LwzAYB_AgipvTq0cpePHSmdemPY45dTAUnLJjSdsnM6MvM1mR3fwIfkY_iRmbE7yYSwL55c-TP0LnBPcJxvRa1Qb6FFOCOYn4AeoSQUnIpGSH_swZC2UsSAedOLfwPo5xdIw6jGO_ZNJFN4NgCqX--vgcOAdVVkIRDNUcAt3YYGYK8DfTvFlCMHw1VpXBE-TNvDYr09SBqYOZWoE9RUdalQ7OdnsPvdyOnof34eTxbjwcTMKcScZDhUkRyUTJnGYJFDyjuSaJZFkUa840CCyYKDIuIRNxIryAjGFGJFVSJzphPXS1zV3a5q0Ft0or43IoS1VD07qUCv9BwiNKPL38QxdNa2s_nVfC90UZibzqb1VuG-cs6HRpTaXsOiU43fSbbvpN9_36Bxe72DaroNjzn0I9SLbg3ZSw_icuHTyMR7_h39xVhj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550212316</pqid></control><display><type>article</type><title>A Self‐Assembled Cage for Wide‐Scope Chiral Recognition in Water</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Guangcheng ; Chen, Yixin ; Fang, Shuai ; Tong, Lu ; Shen, Libo ; Ge, Chenqi ; Pan, Yuanjiang ; Shi, Xiangli ; Li, Hao</creator><creatorcontrib>Wu, Guangcheng ; Chen, Yixin ; Fang, Shuai ; Tong, Lu ; Shen, Libo ; Ge, Chenqi ; Pan, Yuanjiang ; Shi, Xiangli ; Li, Hao</creatorcontrib><description>Herein, we report the self‐assembly of an anionic homochiral octahedral cage by condensing six Ga3+ cations and four trisacylhydrazone ligands. The robust nature of the hydrazone bond renders the cage stable in water, where it can take advantage of the hydrophobic effect for host–guest recognition. In addition to the internal binding site, namely, the inner cavity, the octahedral cage possesses four “windows”, each of which represents an external binding site allowing peripheral complexation. These internal and external binding sites endow the cage with the capability to bind a broad range of guests whose sizes could either be smaller than or exceed the volume of the cage′s inner cavity. Upon accommodation of a chiral guest, one of the two cage enantiomers becomes more favored than the other, producing circular‐dichroism (CD) signals. The CD signal intensity of the cage is observed to be proportional to the ee value of the chiral guest, allowing a quantitative determination of the latter.
A self‐assembled homochiral anionic cage with dual binding modes acts as an efficient chiroptical sensor with a broad substrate scope in water.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202104164</identifier><identifier>PMID: 34000079</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Binding sites ; Cages ; Cations ; chiroptical sensing ; Dichroism ; Enantiomers ; homochirality ; host–guest chemistry ; Hydrazones ; Hydrophobicity ; metallocage ; peripheral binding ; Recognition</subject><ispartof>Angewandte Chemie International Edition, 2021-07, Vol.60 (30), p.16594-16599</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-a01d679a7c2b9ed4b2cf1973b68f43fe50535db47eb5895ed4eb303172a7f9f93</citedby><cites>FETCH-LOGICAL-c3734-a01d679a7c2b9ed4b2cf1973b68f43fe50535db47eb5895ed4eb303172a7f9f93</cites><orcidid>0000-0003-2900-2600 ; 0000-0001-6112-9092 ; 0000-0002-6959-3233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202104164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202104164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34000079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Guangcheng</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Fang, Shuai</creatorcontrib><creatorcontrib>Tong, Lu</creatorcontrib><creatorcontrib>Shen, Libo</creatorcontrib><creatorcontrib>Ge, Chenqi</creatorcontrib><creatorcontrib>Pan, Yuanjiang</creatorcontrib><creatorcontrib>Shi, Xiangli</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><title>A Self‐Assembled Cage for Wide‐Scope Chiral Recognition in Water</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Herein, we report the self‐assembly of an anionic homochiral octahedral cage by condensing six Ga3+ cations and four trisacylhydrazone ligands. The robust nature of the hydrazone bond renders the cage stable in water, where it can take advantage of the hydrophobic effect for host–guest recognition. In addition to the internal binding site, namely, the inner cavity, the octahedral cage possesses four “windows”, each of which represents an external binding site allowing peripheral complexation. These internal and external binding sites endow the cage with the capability to bind a broad range of guests whose sizes could either be smaller than or exceed the volume of the cage′s inner cavity. Upon accommodation of a chiral guest, one of the two cage enantiomers becomes more favored than the other, producing circular‐dichroism (CD) signals. The CD signal intensity of the cage is observed to be proportional to the ee value of the chiral guest, allowing a quantitative determination of the latter.
A self‐assembled homochiral anionic cage with dual binding modes acts as an efficient chiroptical sensor with a broad substrate scope in water.</description><subject>Binding sites</subject><subject>Cages</subject><subject>Cations</subject><subject>chiroptical sensing</subject><subject>Dichroism</subject><subject>Enantiomers</subject><subject>homochirality</subject><subject>host–guest chemistry</subject><subject>Hydrazones</subject><subject>Hydrophobicity</subject><subject>metallocage</subject><subject>peripheral binding</subject><subject>Recognition</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAYB_AgipvTq0cpePHSmdemPY45dTAUnLJjSdsnM6MvM1mR3fwIfkY_iRmbE7yYSwL55c-TP0LnBPcJxvRa1Qb6FFOCOYn4AeoSQUnIpGSH_swZC2UsSAedOLfwPo5xdIw6jGO_ZNJFN4NgCqX--vgcOAdVVkIRDNUcAt3YYGYK8DfTvFlCMHw1VpXBE-TNvDYr09SBqYOZWoE9RUdalQ7OdnsPvdyOnof34eTxbjwcTMKcScZDhUkRyUTJnGYJFDyjuSaJZFkUa840CCyYKDIuIRNxIryAjGFGJFVSJzphPXS1zV3a5q0Ft0or43IoS1VD07qUCv9BwiNKPL38QxdNa2s_nVfC90UZibzqb1VuG-cs6HRpTaXsOiU43fSbbvpN9_36Bxe72DaroNjzn0I9SLbg3ZSw_icuHTyMR7_h39xVhj0</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Wu, Guangcheng</creator><creator>Chen, Yixin</creator><creator>Fang, Shuai</creator><creator>Tong, Lu</creator><creator>Shen, Libo</creator><creator>Ge, Chenqi</creator><creator>Pan, Yuanjiang</creator><creator>Shi, Xiangli</creator><creator>Li, Hao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2900-2600</orcidid><orcidid>https://orcid.org/0000-0001-6112-9092</orcidid><orcidid>https://orcid.org/0000-0002-6959-3233</orcidid></search><sort><creationdate>20210719</creationdate><title>A Self‐Assembled Cage for Wide‐Scope Chiral Recognition in Water</title><author>Wu, Guangcheng ; Chen, Yixin ; Fang, Shuai ; Tong, Lu ; Shen, Libo ; Ge, Chenqi ; Pan, Yuanjiang ; Shi, Xiangli ; Li, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-a01d679a7c2b9ed4b2cf1973b68f43fe50535db47eb5895ed4eb303172a7f9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding sites</topic><topic>Cages</topic><topic>Cations</topic><topic>chiroptical sensing</topic><topic>Dichroism</topic><topic>Enantiomers</topic><topic>homochirality</topic><topic>host–guest chemistry</topic><topic>Hydrazones</topic><topic>Hydrophobicity</topic><topic>metallocage</topic><topic>peripheral binding</topic><topic>Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guangcheng</creatorcontrib><creatorcontrib>Chen, Yixin</creatorcontrib><creatorcontrib>Fang, Shuai</creatorcontrib><creatorcontrib>Tong, Lu</creatorcontrib><creatorcontrib>Shen, Libo</creatorcontrib><creatorcontrib>Ge, Chenqi</creatorcontrib><creatorcontrib>Pan, Yuanjiang</creatorcontrib><creatorcontrib>Shi, Xiangli</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guangcheng</au><au>Chen, Yixin</au><au>Fang, Shuai</au><au>Tong, Lu</au><au>Shen, Libo</au><au>Ge, Chenqi</au><au>Pan, Yuanjiang</au><au>Shi, Xiangli</au><au>Li, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self‐Assembled Cage for Wide‐Scope Chiral Recognition in Water</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-07-19</date><risdate>2021</risdate><volume>60</volume><issue>30</issue><spage>16594</spage><epage>16599</epage><pages>16594-16599</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Herein, we report the self‐assembly of an anionic homochiral octahedral cage by condensing six Ga3+ cations and four trisacylhydrazone ligands. The robust nature of the hydrazone bond renders the cage stable in water, where it can take advantage of the hydrophobic effect for host–guest recognition. In addition to the internal binding site, namely, the inner cavity, the octahedral cage possesses four “windows”, each of which represents an external binding site allowing peripheral complexation. These internal and external binding sites endow the cage with the capability to bind a broad range of guests whose sizes could either be smaller than or exceed the volume of the cage′s inner cavity. Upon accommodation of a chiral guest, one of the two cage enantiomers becomes more favored than the other, producing circular‐dichroism (CD) signals. The CD signal intensity of the cage is observed to be proportional to the ee value of the chiral guest, allowing a quantitative determination of the latter.
A self‐assembled homochiral anionic cage with dual binding modes acts as an efficient chiroptical sensor with a broad substrate scope in water.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34000079</pmid><doi>10.1002/anie.202104164</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2900-2600</orcidid><orcidid>https://orcid.org/0000-0001-6112-9092</orcidid><orcidid>https://orcid.org/0000-0002-6959-3233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-07, Vol.60 (30), p.16594-16599 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2528814621 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Binding sites Cages Cations chiroptical sensing Dichroism Enantiomers homochirality host–guest chemistry Hydrazones Hydrophobicity metallocage peripheral binding Recognition |
title | A Self‐Assembled Cage for Wide‐Scope Chiral Recognition in Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self%E2%80%90Assembled%20Cage%20for%20Wide%E2%80%90Scope%20Chiral%20Recognition%20in%20Water&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wu,%20Guangcheng&rft.date=2021-07-19&rft.volume=60&rft.issue=30&rft.spage=16594&rft.epage=16599&rft.pages=16594-16599&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202104164&rft_dat=%3Cproquest_cross%3E2528814621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550212316&rft_id=info:pmid/34000079&rfr_iscdi=true |