Interaction of cellulose and xyloglucan influences in vitro fermentation outcomes

•Cellulose-xyloglucan (BC-XG) interactions affect fermentation in multiple ways.•Fermentation of both XG (rate) and BC (extent) enhanced in physical mixtures.•BCXG composites ferment differently to a physical mixture of BC and XG.•XG fermented less and cellulose more in BCXG than in BC and XG mixtur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2021-04, Vol.258, p.117698-117698, Article 117698
Hauptverfasser: Lu, Shiyi, Mikkelsen, Deirdre, Flanagan, Bernadine M., Williams, Barbara A., Gidley, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117698
container_issue
container_start_page 117698
container_title Carbohydrate polymers
container_volume 258
creator Lu, Shiyi
Mikkelsen, Deirdre
Flanagan, Bernadine M.
Williams, Barbara A.
Gidley, Michael J.
description •Cellulose-xyloglucan (BC-XG) interactions affect fermentation in multiple ways.•Fermentation of both XG (rate) and BC (extent) enhanced in physical mixtures.•BCXG composites ferment differently to a physical mixture of BC and XG.•XG fermented less and cellulose more in BCXG than in BC and XG mixture.•Differences consistent with microbial community and short chain fatty acid changes. To investigate the effects of interactions between cellulose and xyloglucan (XG) on in vitro fermentation, a composite of bacterial cellulose (BC) incorporating XG during pellicle formation (BCXG), was fermented using a human faecal inoculum, and compared with BC, XG and a mixture (BC&XG) physically blended to have the same BC to XG ratio of BCXG. Compared to individual polysaccharides, the fermentation extent of BC and fermentation rate of XG were promoted in BC&XG. XG embedded in the BCXG composite was degraded less than in BC&XG, while more cellulose in BCXG was fermented than in BC&XG. This combination explains the similar amount of short chain fatty acid production noted throughout the fermentation process for BCXG and BC&XG. Microbial community dynamics for each substrate were consistent with the corresponding polysaccharide degradation. Thus, interactions between cellulose and XG are shown to influence their fermentability in multiple ways.
doi_str_mv 10.1016/j.carbpol.2021.117698
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528508696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861721000850</els_id><sourcerecordid>2528508696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-c335f41bc67fa9de4b6446d64b992c464d2872516f41fdadca3a54b9974c45833</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMobk5_gtJLbzqb5qPtlcjwYzAQQa9DmpxIRtrMpB3u39vS6a25SAJ53pxzHoSucbbEGeZ326WSod55t8yzHC8xLnhVnqA5LosqxYTSUzTPMKVpyXExQxcxbrNhcZydoxkhrCKMV3P0tm47CFJ11reJN4kC53rnIySy1cn3wflP1yvZJrY1rodWQRyuyd52wScGQgNtJ6dw3ynfQLxEZ0a6CFfHc4E-nh7fVy_p5vV5vXrYpIpw1g07YYbiWvHCyEoDrTmlXHNaV1WuKKc6L4ucYT5ARkutJJFsfCyooqwkZIFup393wX_1EDvR2Di2L1vwfRQ5y0uWlbziA8omVAUfYwAjdsE2MhwEzsRoU2zF0aYYbYrJ5pC7OZbo6wb0X-pX3wDcTwAMg-4tBBGVHSVpG0B1Qnv7T4kfF3KJoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528508696</pqid></control><display><type>article</type><title>Interaction of cellulose and xyloglucan influences in vitro fermentation outcomes</title><source>Elsevier ScienceDirect Journals</source><creator>Lu, Shiyi ; Mikkelsen, Deirdre ; Flanagan, Bernadine M. ; Williams, Barbara A. ; Gidley, Michael J.</creator><creatorcontrib>Lu, Shiyi ; Mikkelsen, Deirdre ; Flanagan, Bernadine M. ; Williams, Barbara A. ; Gidley, Michael J.</creatorcontrib><description>•Cellulose-xyloglucan (BC-XG) interactions affect fermentation in multiple ways.•Fermentation of both XG (rate) and BC (extent) enhanced in physical mixtures.•BCXG composites ferment differently to a physical mixture of BC and XG.•XG fermented less and cellulose more in BCXG than in BC and XG mixture.•Differences consistent with microbial community and short chain fatty acid changes. To investigate the effects of interactions between cellulose and xyloglucan (XG) on in vitro fermentation, a composite of bacterial cellulose (BC) incorporating XG during pellicle formation (BCXG), was fermented using a human faecal inoculum, and compared with BC, XG and a mixture (BC&amp;XG) physically blended to have the same BC to XG ratio of BCXG. Compared to individual polysaccharides, the fermentation extent of BC and fermentation rate of XG were promoted in BC&amp;XG. XG embedded in the BCXG composite was degraded less than in BC&amp;XG, while more cellulose in BCXG was fermented than in BC&amp;XG. This combination explains the similar amount of short chain fatty acid production noted throughout the fermentation process for BCXG and BC&amp;XG. Microbial community dynamics for each substrate were consistent with the corresponding polysaccharide degradation. Thus, interactions between cellulose and XG are shown to influence their fermentability in multiple ways.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2021.117698</identifier><identifier>PMID: 33593569</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacterial cellulose ; Cellulosic composite ; Fermentation ; Short chain fatty acids ; Xyloglucan</subject><ispartof>Carbohydrate polymers, 2021-04, Vol.258, p.117698-117698, Article 117698</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-c335f41bc67fa9de4b6446d64b992c464d2872516f41fdadca3a54b9974c45833</citedby><cites>FETCH-LOGICAL-c365t-c335f41bc67fa9de4b6446d64b992c464d2872516f41fdadca3a54b9974c45833</cites><orcidid>0000-0002-8372-4527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861721000850$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33593569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Shiyi</creatorcontrib><creatorcontrib>Mikkelsen, Deirdre</creatorcontrib><creatorcontrib>Flanagan, Bernadine M.</creatorcontrib><creatorcontrib>Williams, Barbara A.</creatorcontrib><creatorcontrib>Gidley, Michael J.</creatorcontrib><title>Interaction of cellulose and xyloglucan influences in vitro fermentation outcomes</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Cellulose-xyloglucan (BC-XG) interactions affect fermentation in multiple ways.•Fermentation of both XG (rate) and BC (extent) enhanced in physical mixtures.•BCXG composites ferment differently to a physical mixture of BC and XG.•XG fermented less and cellulose more in BCXG than in BC and XG mixture.•Differences consistent with microbial community and short chain fatty acid changes. To investigate the effects of interactions between cellulose and xyloglucan (XG) on in vitro fermentation, a composite of bacterial cellulose (BC) incorporating XG during pellicle formation (BCXG), was fermented using a human faecal inoculum, and compared with BC, XG and a mixture (BC&amp;XG) physically blended to have the same BC to XG ratio of BCXG. Compared to individual polysaccharides, the fermentation extent of BC and fermentation rate of XG were promoted in BC&amp;XG. XG embedded in the BCXG composite was degraded less than in BC&amp;XG, while more cellulose in BCXG was fermented than in BC&amp;XG. This combination explains the similar amount of short chain fatty acid production noted throughout the fermentation process for BCXG and BC&amp;XG. Microbial community dynamics for each substrate were consistent with the corresponding polysaccharide degradation. Thus, interactions between cellulose and XG are shown to influence their fermentability in multiple ways.</description><subject>Bacterial cellulose</subject><subject>Cellulosic composite</subject><subject>Fermentation</subject><subject>Short chain fatty acids</subject><subject>Xyloglucan</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMobk5_gtJLbzqb5qPtlcjwYzAQQa9DmpxIRtrMpB3u39vS6a25SAJ53pxzHoSucbbEGeZ326WSod55t8yzHC8xLnhVnqA5LosqxYTSUzTPMKVpyXExQxcxbrNhcZydoxkhrCKMV3P0tm47CFJ11reJN4kC53rnIySy1cn3wflP1yvZJrY1rodWQRyuyd52wScGQgNtJ6dw3ynfQLxEZ0a6CFfHc4E-nh7fVy_p5vV5vXrYpIpw1g07YYbiWvHCyEoDrTmlXHNaV1WuKKc6L4ucYT5ARkutJJFsfCyooqwkZIFup393wX_1EDvR2Di2L1vwfRQ5y0uWlbziA8omVAUfYwAjdsE2MhwEzsRoU2zF0aYYbYrJ5pC7OZbo6wb0X-pX3wDcTwAMg-4tBBGVHSVpG0B1Qnv7T4kfF3KJoQ</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Lu, Shiyi</creator><creator>Mikkelsen, Deirdre</creator><creator>Flanagan, Bernadine M.</creator><creator>Williams, Barbara A.</creator><creator>Gidley, Michael J.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8372-4527</orcidid></search><sort><creationdate>20210415</creationdate><title>Interaction of cellulose and xyloglucan influences in vitro fermentation outcomes</title><author>Lu, Shiyi ; Mikkelsen, Deirdre ; Flanagan, Bernadine M. ; Williams, Barbara A. ; Gidley, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-c335f41bc67fa9de4b6446d64b992c464d2872516f41fdadca3a54b9974c45833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bacterial cellulose</topic><topic>Cellulosic composite</topic><topic>Fermentation</topic><topic>Short chain fatty acids</topic><topic>Xyloglucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shiyi</creatorcontrib><creatorcontrib>Mikkelsen, Deirdre</creatorcontrib><creatorcontrib>Flanagan, Bernadine M.</creatorcontrib><creatorcontrib>Williams, Barbara A.</creatorcontrib><creatorcontrib>Gidley, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shiyi</au><au>Mikkelsen, Deirdre</au><au>Flanagan, Bernadine M.</au><au>Williams, Barbara A.</au><au>Gidley, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of cellulose and xyloglucan influences in vitro fermentation outcomes</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>258</volume><spage>117698</spage><epage>117698</epage><pages>117698-117698</pages><artnum>117698</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•Cellulose-xyloglucan (BC-XG) interactions affect fermentation in multiple ways.•Fermentation of both XG (rate) and BC (extent) enhanced in physical mixtures.•BCXG composites ferment differently to a physical mixture of BC and XG.•XG fermented less and cellulose more in BCXG than in BC and XG mixture.•Differences consistent with microbial community and short chain fatty acid changes. To investigate the effects of interactions between cellulose and xyloglucan (XG) on in vitro fermentation, a composite of bacterial cellulose (BC) incorporating XG during pellicle formation (BCXG), was fermented using a human faecal inoculum, and compared with BC, XG and a mixture (BC&amp;XG) physically blended to have the same BC to XG ratio of BCXG. Compared to individual polysaccharides, the fermentation extent of BC and fermentation rate of XG were promoted in BC&amp;XG. XG embedded in the BCXG composite was degraded less than in BC&amp;XG, while more cellulose in BCXG was fermented than in BC&amp;XG. This combination explains the similar amount of short chain fatty acid production noted throughout the fermentation process for BCXG and BC&amp;XG. Microbial community dynamics for each substrate were consistent with the corresponding polysaccharide degradation. Thus, interactions between cellulose and XG are shown to influence their fermentability in multiple ways.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33593569</pmid><doi>10.1016/j.carbpol.2021.117698</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8372-4527</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2021-04, Vol.258, p.117698-117698, Article 117698
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2528508696
source Elsevier ScienceDirect Journals
subjects Bacterial cellulose
Cellulosic composite
Fermentation
Short chain fatty acids
Xyloglucan
title Interaction of cellulose and xyloglucan influences in vitro fermentation outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20cellulose%20and%20xyloglucan%20influences%20in%20vitro%20fermentation%20outcomes&rft.jtitle=Carbohydrate%20polymers&rft.au=Lu,%20Shiyi&rft.date=2021-04-15&rft.volume=258&rft.spage=117698&rft.epage=117698&rft.pages=117698-117698&rft.artnum=117698&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2021.117698&rft_dat=%3Cproquest_cross%3E2528508696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528508696&rft_id=info:pmid/33593569&rft_els_id=S0144861721000850&rfr_iscdi=true