A self-supervised feature-standardization-block for cross-domain lung disease classification

•We propose a self-supervised FSB, which can be easily extended to any CNN architectures.•We design an GLCM loss to minimize the differences among input images.•Our FSB achieves about 6% accuracy improvement for testing datasets. With the advance of deep learning technology, convolutional neural net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2022-06, Vol.202, p.70-77
Hauptverfasser: Li, Xuechen, Shen, Linlin, Lai, Zhihui, Li, Zhongliang, Yu, Juan, Pu, Zuhui, Mou, Lisha, Cao, Min, Kong, Heng, Li, Yingqi, Dai, Weicai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 70
container_title Methods (San Diego, Calif.)
container_volume 202
creator Li, Xuechen
Shen, Linlin
Lai, Zhihui
Li, Zhongliang
Yu, Juan
Pu, Zuhui
Mou, Lisha
Cao, Min
Kong, Heng
Li, Yingqi
Dai, Weicai
description •We propose a self-supervised FSB, which can be easily extended to any CNN architectures.•We design an GLCM loss to minimize the differences among input images.•Our FSB achieves about 6% accuracy improvement for testing datasets. With the advance of deep learning technology, convolutional neural network (CNN) has been wildly used and achieved the state-of-the-art performances in the area of medical image classification. However, most existing medical image classification methods conduct their experiments on only one public dataset. When applying a well-trained model to a different dataset selected from different sources, the model usually shows large performance degradation and needs to be fine-tuned before it can be applied to the new dataset. The goal of this work is trying to solve the cross-domain image classification problem without using data from target domain. In this work, we designed a self-supervised plug-and-play feature-standardization-block (FSB) which consisting of image normalization (INB), contrast enhancement (CEB) and boundary detection blocks (BDB), to extract cross-domain robust feature maps for deep learning framework, and applied the network for chest x-ray-based lung diseases classification. Three classic deep networks, i.e. VGG, Xception and DenseNet and four chest x-ray lung diseases datasets were employed for evaluating the performance. The experimental result showed that when employing feature-standardization-block, all three networks showed better domain adaption performance. The image normalization, contrast enhancement and boundary detection blocks achieved in average 2%, 2% and 5% accuracy improvement, respectively. By combining all three blocks, feature-standardization-block achieved in average 6% accuracy improvement.
doi_str_mv 10.1016/j.ymeth.2021.05.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528439643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104620232100133X</els_id><sourcerecordid>2528439643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4fe29544b69115a0d69407e55b14f05edd3f7055f2bbed467fb486ae679be0703</originalsourceid><addsrcrecordid>eNp9kEtPHDEQhK0oKBDIL4gUzTEXD-3XeH3ggBB5SEhc4IZkeex24s08FntmJfj1zO4Cx5y6pa7qUn2EfGVQM2DN-bp-6nH6W3PgrAZVA-gP5ISBUdQwAR93u2zochbH5HMpawBgXK8-kWMhjOFa8xPycFkV7CIt8wbzNhUMVUQ3zRlpmdwQXA7p2U1pHGjbjf5fFcdc-TyWQsPYuzRU3Tz8qcLidAUr37lSUkx-bzkjR9F1Bb-8zlNy_-P67uoXvbn9-fvq8oZ6ocxEZURulJRtYxhTDkJjJGhUqmUygsIQRNSgVORti0E2OrZy1ThstGkRNIhT8v3wd5PHxxnLZPtUPHadG3Cci-WKr6QwjRSLVByk-w4Zo93k1Lv8ZBnYHVa7tnusdofVgrIL1sX17TVgbnsM7543jovg4iDApeY2YbbFJxw8hpTRTzaM6b8BL_lii2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528439643</pqid></control><display><type>article</type><title>A self-supervised feature-standardization-block for cross-domain lung disease classification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Xuechen ; Shen, Linlin ; Lai, Zhihui ; Li, Zhongliang ; Yu, Juan ; Pu, Zuhui ; Mou, Lisha ; Cao, Min ; Kong, Heng ; Li, Yingqi ; Dai, Weicai</creator><creatorcontrib>Li, Xuechen ; Shen, Linlin ; Lai, Zhihui ; Li, Zhongliang ; Yu, Juan ; Pu, Zuhui ; Mou, Lisha ; Cao, Min ; Kong, Heng ; Li, Yingqi ; Dai, Weicai</creatorcontrib><description>•We propose a self-supervised FSB, which can be easily extended to any CNN architectures.•We design an GLCM loss to minimize the differences among input images.•Our FSB achieves about 6% accuracy improvement for testing datasets. With the advance of deep learning technology, convolutional neural network (CNN) has been wildly used and achieved the state-of-the-art performances in the area of medical image classification. However, most existing medical image classification methods conduct their experiments on only one public dataset. When applying a well-trained model to a different dataset selected from different sources, the model usually shows large performance degradation and needs to be fine-tuned before it can be applied to the new dataset. The goal of this work is trying to solve the cross-domain image classification problem without using data from target domain. In this work, we designed a self-supervised plug-and-play feature-standardization-block (FSB) which consisting of image normalization (INB), contrast enhancement (CEB) and boundary detection blocks (BDB), to extract cross-domain robust feature maps for deep learning framework, and applied the network for chest x-ray-based lung diseases classification. Three classic deep networks, i.e. VGG, Xception and DenseNet and four chest x-ray lung diseases datasets were employed for evaluating the performance. The experimental result showed that when employing feature-standardization-block, all three networks showed better domain adaption performance. The image normalization, contrast enhancement and boundary detection blocks achieved in average 2%, 2% and 5% accuracy improvement, respectively. By combining all three blocks, feature-standardization-block achieved in average 6% accuracy improvement.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2021.05.007</identifier><identifier>PMID: 33992772</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chest x-ray ; Computer-aided diagnosis ; Deep Learning ; Domain adaption ; Humans ; Lung ; Lung disease detection ; Lung Diseases - diagnostic imaging ; Neural Networks, Computer ; Reference Standards</subject><ispartof>Methods (San Diego, Calif.), 2022-06, Vol.202, p.70-77</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4fe29544b69115a0d69407e55b14f05edd3f7055f2bbed467fb486ae679be0703</citedby><cites>FETCH-LOGICAL-c359t-4fe29544b69115a0d69407e55b14f05edd3f7055f2bbed467fb486ae679be0703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S104620232100133X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33992772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Shen, Linlin</creatorcontrib><creatorcontrib>Lai, Zhihui</creatorcontrib><creatorcontrib>Li, Zhongliang</creatorcontrib><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Pu, Zuhui</creatorcontrib><creatorcontrib>Mou, Lisha</creatorcontrib><creatorcontrib>Cao, Min</creatorcontrib><creatorcontrib>Kong, Heng</creatorcontrib><creatorcontrib>Li, Yingqi</creatorcontrib><creatorcontrib>Dai, Weicai</creatorcontrib><title>A self-supervised feature-standardization-block for cross-domain lung disease classification</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•We propose a self-supervised FSB, which can be easily extended to any CNN architectures.•We design an GLCM loss to minimize the differences among input images.•Our FSB achieves about 6% accuracy improvement for testing datasets. With the advance of deep learning technology, convolutional neural network (CNN) has been wildly used and achieved the state-of-the-art performances in the area of medical image classification. However, most existing medical image classification methods conduct their experiments on only one public dataset. When applying a well-trained model to a different dataset selected from different sources, the model usually shows large performance degradation and needs to be fine-tuned before it can be applied to the new dataset. The goal of this work is trying to solve the cross-domain image classification problem without using data from target domain. In this work, we designed a self-supervised plug-and-play feature-standardization-block (FSB) which consisting of image normalization (INB), contrast enhancement (CEB) and boundary detection blocks (BDB), to extract cross-domain robust feature maps for deep learning framework, and applied the network for chest x-ray-based lung diseases classification. Three classic deep networks, i.e. VGG, Xception and DenseNet and four chest x-ray lung diseases datasets were employed for evaluating the performance. The experimental result showed that when employing feature-standardization-block, all three networks showed better domain adaption performance. The image normalization, contrast enhancement and boundary detection blocks achieved in average 2%, 2% and 5% accuracy improvement, respectively. By combining all three blocks, feature-standardization-block achieved in average 6% accuracy improvement.</description><subject>Chest x-ray</subject><subject>Computer-aided diagnosis</subject><subject>Deep Learning</subject><subject>Domain adaption</subject><subject>Humans</subject><subject>Lung</subject><subject>Lung disease detection</subject><subject>Lung Diseases - diagnostic imaging</subject><subject>Neural Networks, Computer</subject><subject>Reference Standards</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPHDEQhK0oKBDIL4gUzTEXD-3XeH3ggBB5SEhc4IZkeex24s08FntmJfj1zO4Cx5y6pa7qUn2EfGVQM2DN-bp-6nH6W3PgrAZVA-gP5ISBUdQwAR93u2zochbH5HMpawBgXK8-kWMhjOFa8xPycFkV7CIt8wbzNhUMVUQ3zRlpmdwQXA7p2U1pHGjbjf5fFcdc-TyWQsPYuzRU3Tz8qcLidAUr37lSUkx-bzkjR9F1Bb-8zlNy_-P67uoXvbn9-fvq8oZ6ocxEZURulJRtYxhTDkJjJGhUqmUygsIQRNSgVORti0E2OrZy1ThstGkRNIhT8v3wd5PHxxnLZPtUPHadG3Cci-WKr6QwjRSLVByk-w4Zo93k1Lv8ZBnYHVa7tnusdofVgrIL1sX17TVgbnsM7543jovg4iDApeY2YbbFJxw8hpTRTzaM6b8BL_lii2w</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Li, Xuechen</creator><creator>Shen, Linlin</creator><creator>Lai, Zhihui</creator><creator>Li, Zhongliang</creator><creator>Yu, Juan</creator><creator>Pu, Zuhui</creator><creator>Mou, Lisha</creator><creator>Cao, Min</creator><creator>Kong, Heng</creator><creator>Li, Yingqi</creator><creator>Dai, Weicai</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202206</creationdate><title>A self-supervised feature-standardization-block for cross-domain lung disease classification</title><author>Li, Xuechen ; Shen, Linlin ; Lai, Zhihui ; Li, Zhongliang ; Yu, Juan ; Pu, Zuhui ; Mou, Lisha ; Cao, Min ; Kong, Heng ; Li, Yingqi ; Dai, Weicai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4fe29544b69115a0d69407e55b14f05edd3f7055f2bbed467fb486ae679be0703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chest x-ray</topic><topic>Computer-aided diagnosis</topic><topic>Deep Learning</topic><topic>Domain adaption</topic><topic>Humans</topic><topic>Lung</topic><topic>Lung disease detection</topic><topic>Lung Diseases - diagnostic imaging</topic><topic>Neural Networks, Computer</topic><topic>Reference Standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Shen, Linlin</creatorcontrib><creatorcontrib>Lai, Zhihui</creatorcontrib><creatorcontrib>Li, Zhongliang</creatorcontrib><creatorcontrib>Yu, Juan</creatorcontrib><creatorcontrib>Pu, Zuhui</creatorcontrib><creatorcontrib>Mou, Lisha</creatorcontrib><creatorcontrib>Cao, Min</creatorcontrib><creatorcontrib>Kong, Heng</creatorcontrib><creatorcontrib>Li, Yingqi</creatorcontrib><creatorcontrib>Dai, Weicai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuechen</au><au>Shen, Linlin</au><au>Lai, Zhihui</au><au>Li, Zhongliang</au><au>Yu, Juan</au><au>Pu, Zuhui</au><au>Mou, Lisha</au><au>Cao, Min</au><au>Kong, Heng</au><au>Li, Yingqi</au><au>Dai, Weicai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-supervised feature-standardization-block for cross-domain lung disease classification</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2022-06</date><risdate>2022</risdate><volume>202</volume><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>•We propose a self-supervised FSB, which can be easily extended to any CNN architectures.•We design an GLCM loss to minimize the differences among input images.•Our FSB achieves about 6% accuracy improvement for testing datasets. With the advance of deep learning technology, convolutional neural network (CNN) has been wildly used and achieved the state-of-the-art performances in the area of medical image classification. However, most existing medical image classification methods conduct their experiments on only one public dataset. When applying a well-trained model to a different dataset selected from different sources, the model usually shows large performance degradation and needs to be fine-tuned before it can be applied to the new dataset. The goal of this work is trying to solve the cross-domain image classification problem without using data from target domain. In this work, we designed a self-supervised plug-and-play feature-standardization-block (FSB) which consisting of image normalization (INB), contrast enhancement (CEB) and boundary detection blocks (BDB), to extract cross-domain robust feature maps for deep learning framework, and applied the network for chest x-ray-based lung diseases classification. Three classic deep networks, i.e. VGG, Xception and DenseNet and four chest x-ray lung diseases datasets were employed for evaluating the performance. The experimental result showed that when employing feature-standardization-block, all three networks showed better domain adaption performance. The image normalization, contrast enhancement and boundary detection blocks achieved in average 2%, 2% and 5% accuracy improvement, respectively. By combining all three blocks, feature-standardization-block achieved in average 6% accuracy improvement.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33992772</pmid><doi>10.1016/j.ymeth.2021.05.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2022-06, Vol.202, p.70-77
issn 1046-2023
1095-9130
language eng
recordid cdi_proquest_miscellaneous_2528439643
source MEDLINE; Elsevier ScienceDirect Journals
subjects Chest x-ray
Computer-aided diagnosis
Deep Learning
Domain adaption
Humans
Lung
Lung disease detection
Lung Diseases - diagnostic imaging
Neural Networks, Computer
Reference Standards
title A self-supervised feature-standardization-block for cross-domain lung disease classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-supervised%20feature-standardization-block%20for%20cross-domain%20lung%20disease%20classification&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Li,%20Xuechen&rft.date=2022-06&rft.volume=202&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2021.05.007&rft_dat=%3Cproquest_cross%3E2528439643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528439643&rft_id=info:pmid/33992772&rft_els_id=S104620232100133X&rfr_iscdi=true