Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations
The simple dependence of the intensity in annular dark field scanning transmission electron microscopy images on the atomic number provides (to some extent) chemical information about the sample, and even allows an elemental identification in the case of light-element single-layer samples. However,...
Gespeichert in:
Veröffentlicht in: | Ultramicroscopy 2021-08, Vol.227, p.113292-113292, Article 113292 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113292 |
---|---|
container_issue | |
container_start_page | 113292 |
container_title | Ultramicroscopy |
container_volume | 227 |
creator | Hofer, Christoph Skákalová, Viera Haas, Jonas Wang, Xiao Braun, Kai Pennington, Robert S. Meyer, Jannik C. |
description | The simple dependence of the intensity in annular dark field scanning transmission electron microscopy images on the atomic number provides (to some extent) chemical information about the sample, and even allows an elemental identification in the case of light-element single-layer samples. However, the intensity of individual atoms and atomic columns is affected by residual aberrations and the confidence of an identification is limited by the available signal to noise. Here, we show that matching a simulation to an experimental image by iterative optimization provides a reliable analysis of atomic intensities even in presence of residual non-round aberrations. We compare our new method with other established approaches demonstrating its high reliability for images recorded at limited dose and with different aberrations. This is of particular relevance for analyzing moderately beam-sensitive materials, such as most 2D materials, where the limited sample stability often makes it difficult to obtain spectroscopic information at atomic resolution.
•A new method for analyzing atomic intensities of STEM images is introduced.•Our method works better than other methods under the presence of residual aberrations.•The approach is tested with different simulated and experimental 2D structures.•A nitrogen–oxygen configuration in graphene (N-Oxide) is observed. |
doi_str_mv | 10.1016/j.ultramic.2021.113292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528438946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399121000802</els_id><sourcerecordid>2528438946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-19af3015b24a05eedcf245eba2a2902eabf9e83ae67dc0d56fded26fa72008273</originalsourceid><addsrcrecordid>eNqFUctuFDEQtBBRsiT5hchHLrO02_O8EUW8pEhc4Gx57HbwasZe7Bmk_QM-Gw-bcOXUre7qLlUVY3cC9gJE--6wX6cl6dmbPQKKvRASB3zFdqLvhgo7lK_ZDiTUlRwGccXe5HwAAAF1f8muZBliA3LHft8vca7GU6VL5eYHlY964t5SWLwr_eJj4C6VZTY6BB-eeOENefY5byuayCypNOUwxWzi8cT9rJ8ocx_4MVGmYIhHx0P0mbgOlpeht2uh0SOl9Jci37ALp6dMt8_1mn3_-OHbw-fq8eunLw_3j5WpRbtUYtBOgmhGrDU0RNY4rBsaNWocAEmPbqBeamo7a8A2rbNksXW6Q4AeO3nN3p7_HlP8uVJeVFFiaJp0oLhmhQ32teyHui3Q9gzdhOVETh1TkZZOSoDaUlAH9ZKC2lJQ5xTK4d0zxzrOZP-dvdheAO_PACpKf3lKKhu_-WR9KnYqG_3_OP4A-qCgkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528438946</pqid></control><display><type>article</type><title>Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hofer, Christoph ; Skákalová, Viera ; Haas, Jonas ; Wang, Xiao ; Braun, Kai ; Pennington, Robert S. ; Meyer, Jannik C.</creator><creatorcontrib>Hofer, Christoph ; Skákalová, Viera ; Haas, Jonas ; Wang, Xiao ; Braun, Kai ; Pennington, Robert S. ; Meyer, Jannik C.</creatorcontrib><description>The simple dependence of the intensity in annular dark field scanning transmission electron microscopy images on the atomic number provides (to some extent) chemical information about the sample, and even allows an elemental identification in the case of light-element single-layer samples. However, the intensity of individual atoms and atomic columns is affected by residual aberrations and the confidence of an identification is limited by the available signal to noise. Here, we show that matching a simulation to an experimental image by iterative optimization provides a reliable analysis of atomic intensities even in presence of residual non-round aberrations. We compare our new method with other established approaches demonstrating its high reliability for images recorded at limited dose and with different aberrations. This is of particular relevance for analyzing moderately beam-sensitive materials, such as most 2D materials, where the limited sample stability often makes it difficult to obtain spectroscopic information at atomic resolution.
•A new method for analyzing atomic intensities of STEM images is introduced.•Our method works better than other methods under the presence of residual aberrations.•The approach is tested with different simulated and experimental 2D structures.•A nitrogen–oxygen configuration in graphene (N-Oxide) is observed.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2021.113292</identifier><identifier>PMID: 33992503</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>2D materials ; Chemical analysis ; Optimization ; Scanning transmission electron microscopy (STEM)</subject><ispartof>Ultramicroscopy, 2021-08, Vol.227, p.113292-113292, Article 113292</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-19af3015b24a05eedcf245eba2a2902eabf9e83ae67dc0d56fded26fa72008273</citedby><cites>FETCH-LOGICAL-c416t-19af3015b24a05eedcf245eba2a2902eabf9e83ae67dc0d56fded26fa72008273</cites><orcidid>0000-0002-0844-8366 ; 0000-0003-3774-0507 ; 0000-0002-2973-8215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultramic.2021.113292$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33992503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hofer, Christoph</creatorcontrib><creatorcontrib>Skákalová, Viera</creatorcontrib><creatorcontrib>Haas, Jonas</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Braun, Kai</creatorcontrib><creatorcontrib>Pennington, Robert S.</creatorcontrib><creatorcontrib>Meyer, Jannik C.</creatorcontrib><title>Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>The simple dependence of the intensity in annular dark field scanning transmission electron microscopy images on the atomic number provides (to some extent) chemical information about the sample, and even allows an elemental identification in the case of light-element single-layer samples. However, the intensity of individual atoms and atomic columns is affected by residual aberrations and the confidence of an identification is limited by the available signal to noise. Here, we show that matching a simulation to an experimental image by iterative optimization provides a reliable analysis of atomic intensities even in presence of residual non-round aberrations. We compare our new method with other established approaches demonstrating its high reliability for images recorded at limited dose and with different aberrations. This is of particular relevance for analyzing moderately beam-sensitive materials, such as most 2D materials, where the limited sample stability often makes it difficult to obtain spectroscopic information at atomic resolution.
•A new method for analyzing atomic intensities of STEM images is introduced.•Our method works better than other methods under the presence of residual aberrations.•The approach is tested with different simulated and experimental 2D structures.•A nitrogen–oxygen configuration in graphene (N-Oxide) is observed.</description><subject>2D materials</subject><subject>Chemical analysis</subject><subject>Optimization</subject><subject>Scanning transmission electron microscopy (STEM)</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUctuFDEQtBBRsiT5hchHLrO02_O8EUW8pEhc4Gx57HbwasZe7Bmk_QM-Gw-bcOXUre7qLlUVY3cC9gJE--6wX6cl6dmbPQKKvRASB3zFdqLvhgo7lK_ZDiTUlRwGccXe5HwAAAF1f8muZBliA3LHft8vca7GU6VL5eYHlY964t5SWLwr_eJj4C6VZTY6BB-eeOENefY5byuayCypNOUwxWzi8cT9rJ8ocx_4MVGmYIhHx0P0mbgOlpeht2uh0SOl9Jci37ALp6dMt8_1mn3_-OHbw-fq8eunLw_3j5WpRbtUYtBOgmhGrDU0RNY4rBsaNWocAEmPbqBeamo7a8A2rbNksXW6Q4AeO3nN3p7_HlP8uVJeVFFiaJp0oLhmhQ32teyHui3Q9gzdhOVETh1TkZZOSoDaUlAH9ZKC2lJQ5xTK4d0zxzrOZP-dvdheAO_PACpKf3lKKhu_-WR9KnYqG_3_OP4A-qCgkA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Hofer, Christoph</creator><creator>Skákalová, Viera</creator><creator>Haas, Jonas</creator><creator>Wang, Xiao</creator><creator>Braun, Kai</creator><creator>Pennington, Robert S.</creator><creator>Meyer, Jannik C.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0844-8366</orcidid><orcidid>https://orcid.org/0000-0003-3774-0507</orcidid><orcidid>https://orcid.org/0000-0002-2973-8215</orcidid></search><sort><creationdate>20210801</creationdate><title>Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations</title><author>Hofer, Christoph ; Skákalová, Viera ; Haas, Jonas ; Wang, Xiao ; Braun, Kai ; Pennington, Robert S. ; Meyer, Jannik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-19af3015b24a05eedcf245eba2a2902eabf9e83ae67dc0d56fded26fa72008273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D materials</topic><topic>Chemical analysis</topic><topic>Optimization</topic><topic>Scanning transmission electron microscopy (STEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofer, Christoph</creatorcontrib><creatorcontrib>Skákalová, Viera</creatorcontrib><creatorcontrib>Haas, Jonas</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Braun, Kai</creatorcontrib><creatorcontrib>Pennington, Robert S.</creatorcontrib><creatorcontrib>Meyer, Jannik C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofer, Christoph</au><au>Skákalová, Viera</au><au>Haas, Jonas</au><au>Wang, Xiao</au><au>Braun, Kai</au><au>Pennington, Robert S.</au><au>Meyer, Jannik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>227</volume><spage>113292</spage><epage>113292</epage><pages>113292-113292</pages><artnum>113292</artnum><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>The simple dependence of the intensity in annular dark field scanning transmission electron microscopy images on the atomic number provides (to some extent) chemical information about the sample, and even allows an elemental identification in the case of light-element single-layer samples. However, the intensity of individual atoms and atomic columns is affected by residual aberrations and the confidence of an identification is limited by the available signal to noise. Here, we show that matching a simulation to an experimental image by iterative optimization provides a reliable analysis of atomic intensities even in presence of residual non-round aberrations. We compare our new method with other established approaches demonstrating its high reliability for images recorded at limited dose and with different aberrations. This is of particular relevance for analyzing moderately beam-sensitive materials, such as most 2D materials, where the limited sample stability often makes it difficult to obtain spectroscopic information at atomic resolution.
•A new method for analyzing atomic intensities of STEM images is introduced.•Our method works better than other methods under the presence of residual aberrations.•The approach is tested with different simulated and experimental 2D structures.•A nitrogen–oxygen configuration in graphene (N-Oxide) is observed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33992503</pmid><doi>10.1016/j.ultramic.2021.113292</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0844-8366</orcidid><orcidid>https://orcid.org/0000-0003-3774-0507</orcidid><orcidid>https://orcid.org/0000-0002-2973-8215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2021-08, Vol.227, p.113292-113292, Article 113292 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_proquest_miscellaneous_2528438946 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 2D materials Chemical analysis Optimization Scanning transmission electron microscopy (STEM) |
title | Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atom-by-atom%20chemical%20identification%20from%20scanning%20transmission%20electron%20microscopy%20images%20in%20presence%20of%20noise%20and%20residual%20aberrations&rft.jtitle=Ultramicroscopy&rft.au=Hofer,%20Christoph&rft.date=2021-08-01&rft.volume=227&rft.spage=113292&rft.epage=113292&rft.pages=113292-113292&rft.artnum=113292&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2021.113292&rft_dat=%3Cproquest_cross%3E2528438946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528438946&rft_id=info:pmid/33992503&rft_els_id=S0304399121000802&rfr_iscdi=true |