Vertical Nanowire Electrode Array for Enhanced Neurogenesis of Human Neural Stem Cells via Intracellular Electrical Stimulation

Extracellular electrical stimulation (ES) can provide electrical potential from outside the cell membrane, but it is often ineffective due to interference from external factors such as culture medium resistance and membrane capacitance. To address this, we developed a vertical nanowire electrode arr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-07, Vol.21 (14), p.6343-6351
Hauptverfasser: Kwon, Juyoung, Lee, Jong Seung, Lee, Jaejun, Na, Jukwan, Sung, Jaesuk, Lee, Hyo-Jung, Kwak, Hankyul, Cheong, Eunji, Cho, Seung-Woo, Choi, Heon-Jin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6351
container_issue 14
container_start_page 6343
container_title Nano letters
container_volume 21
creator Kwon, Juyoung
Lee, Jong Seung
Lee, Jaejun
Na, Jukwan
Sung, Jaesuk
Lee, Hyo-Jung
Kwak, Hankyul
Cheong, Eunji
Cho, Seung-Woo
Choi, Heon-Jin
description Extracellular electrical stimulation (ES) can provide electrical potential from outside the cell membrane, but it is often ineffective due to interference from external factors such as culture medium resistance and membrane capacitance. To address this, we developed a vertical nanowire electrode array (VNEA) to directly provide intracellular electrical potential and current to cells through nanoelectrodes. Using this approach, the cell membrane resistivity and capacitance could be excluded, allowing effective ES. Human fetal neural stem cells (hfNSCs) were cultured on the VNEA for intracellular ES. Combining the structural properties of VNEA and VNEA-mediated ES, transient nanoscale perforation of the electrode was induced, promoting cell penetration and delivering current to the cell. Intracellular ES using VNEA improved the neuronal differentiation of hfNSCs more effectively than extracellular ES and facilitated electrophysiological functional maturation of hfNSCs because of the enhanced voltage-dependent ion-channel activity. The results demonstrate that VNEA with advanced nanoelectrodes serves as a highly effective culture and stimulation platform for stem-cell neurogenesis.
doi_str_mv 10.1021/acs.nanolett.0c04635
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528436848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528436848</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-73df54e17ec081a82a51da03efa37b80417f342ab8cd2e859d6786c56444125a3</originalsourceid><addsrcrecordid>eNp9kDlPxDAQhS0E4v4HCLmk2cVn4pRotRwSgoKjjWadCQQlNtgOiIq_jpddKKk8Hr33ZuYj5IizKWeCn4KNUwfO95jSlFmmCqk3yC7Xkk2KqhKbf7VRO2QvxhfGWCU12yY7UlaVKSuxS74eMaTOQk9vctZHF5DOe7Qp-AbpWQjwSVsf6Nw9g7PY0Bscg39Ch7GL1Lf0chzA_XRzxF3Cgc6w7yN974BeuRTA5u_YQ1jH_oy6S92Qe6nz7oBstdBHPFy_--ThfH4_u5xc315czc6uJyCVSZNSNq1WyEu0zHAwAjRvgElsQZYLwxQvW6kELIxtBBpdNUVpCqsLpRQXGuQ-OVnlvgb_NmJM9dDF5W7g0I-xFloYJQujTJaqldQGH2PAtn4N3QDhs-asXqKvM_r6F329Rp9tx-sJ42LA5s_0yzoL2EqwtL_4Mbh88P-Z32wklU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528436848</pqid></control><display><type>article</type><title>Vertical Nanowire Electrode Array for Enhanced Neurogenesis of Human Neural Stem Cells via Intracellular Electrical Stimulation</title><source>ACS Publications</source><creator>Kwon, Juyoung ; Lee, Jong Seung ; Lee, Jaejun ; Na, Jukwan ; Sung, Jaesuk ; Lee, Hyo-Jung ; Kwak, Hankyul ; Cheong, Eunji ; Cho, Seung-Woo ; Choi, Heon-Jin</creator><creatorcontrib>Kwon, Juyoung ; Lee, Jong Seung ; Lee, Jaejun ; Na, Jukwan ; Sung, Jaesuk ; Lee, Hyo-Jung ; Kwak, Hankyul ; Cheong, Eunji ; Cho, Seung-Woo ; Choi, Heon-Jin</creatorcontrib><description>Extracellular electrical stimulation (ES) can provide electrical potential from outside the cell membrane, but it is often ineffective due to interference from external factors such as culture medium resistance and membrane capacitance. To address this, we developed a vertical nanowire electrode array (VNEA) to directly provide intracellular electrical potential and current to cells through nanoelectrodes. Using this approach, the cell membrane resistivity and capacitance could be excluded, allowing effective ES. Human fetal neural stem cells (hfNSCs) were cultured on the VNEA for intracellular ES. Combining the structural properties of VNEA and VNEA-mediated ES, transient nanoscale perforation of the electrode was induced, promoting cell penetration and delivering current to the cell. Intracellular ES using VNEA improved the neuronal differentiation of hfNSCs more effectively than extracellular ES and facilitated electrophysiological functional maturation of hfNSCs because of the enhanced voltage-dependent ion-channel activity. The results demonstrate that VNEA with advanced nanoelectrodes serves as a highly effective culture and stimulation platform for stem-cell neurogenesis.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c04635</identifier><identifier>PMID: 33998792</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2021-07, Vol.21 (14), p.6343-6351</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-73df54e17ec081a82a51da03efa37b80417f342ab8cd2e859d6786c56444125a3</citedby><cites>FETCH-LOGICAL-a348t-73df54e17ec081a82a51da03efa37b80417f342ab8cd2e859d6786c56444125a3</cites><orcidid>0000-0001-8058-332X ; 0000-0003-4656-2095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.0c04635$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c04635$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33998792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Juyoung</creatorcontrib><creatorcontrib>Lee, Jong Seung</creatorcontrib><creatorcontrib>Lee, Jaejun</creatorcontrib><creatorcontrib>Na, Jukwan</creatorcontrib><creatorcontrib>Sung, Jaesuk</creatorcontrib><creatorcontrib>Lee, Hyo-Jung</creatorcontrib><creatorcontrib>Kwak, Hankyul</creatorcontrib><creatorcontrib>Cheong, Eunji</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><creatorcontrib>Choi, Heon-Jin</creatorcontrib><title>Vertical Nanowire Electrode Array for Enhanced Neurogenesis of Human Neural Stem Cells via Intracellular Electrical Stimulation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Extracellular electrical stimulation (ES) can provide electrical potential from outside the cell membrane, but it is often ineffective due to interference from external factors such as culture medium resistance and membrane capacitance. To address this, we developed a vertical nanowire electrode array (VNEA) to directly provide intracellular electrical potential and current to cells through nanoelectrodes. Using this approach, the cell membrane resistivity and capacitance could be excluded, allowing effective ES. Human fetal neural stem cells (hfNSCs) were cultured on the VNEA for intracellular ES. Combining the structural properties of VNEA and VNEA-mediated ES, transient nanoscale perforation of the electrode was induced, promoting cell penetration and delivering current to the cell. Intracellular ES using VNEA improved the neuronal differentiation of hfNSCs more effectively than extracellular ES and facilitated electrophysiological functional maturation of hfNSCs because of the enhanced voltage-dependent ion-channel activity. The results demonstrate that VNEA with advanced nanoelectrodes serves as a highly effective culture and stimulation platform for stem-cell neurogenesis.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPxDAQhS0E4v4HCLmk2cVn4pRotRwSgoKjjWadCQQlNtgOiIq_jpddKKk8Hr33ZuYj5IizKWeCn4KNUwfO95jSlFmmCqk3yC7Xkk2KqhKbf7VRO2QvxhfGWCU12yY7UlaVKSuxS74eMaTOQk9vctZHF5DOe7Qp-AbpWQjwSVsf6Nw9g7PY0Bscg39Ch7GL1Lf0chzA_XRzxF3Cgc6w7yN974BeuRTA5u_YQ1jH_oy6S92Qe6nz7oBstdBHPFy_--ThfH4_u5xc315czc6uJyCVSZNSNq1WyEu0zHAwAjRvgElsQZYLwxQvW6kELIxtBBpdNUVpCqsLpRQXGuQ-OVnlvgb_NmJM9dDF5W7g0I-xFloYJQujTJaqldQGH2PAtn4N3QDhs-asXqKvM_r6F329Rp9tx-sJ42LA5s_0yzoL2EqwtL_4Mbh88P-Z32wklU8</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Kwon, Juyoung</creator><creator>Lee, Jong Seung</creator><creator>Lee, Jaejun</creator><creator>Na, Jukwan</creator><creator>Sung, Jaesuk</creator><creator>Lee, Hyo-Jung</creator><creator>Kwak, Hankyul</creator><creator>Cheong, Eunji</creator><creator>Cho, Seung-Woo</creator><creator>Choi, Heon-Jin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8058-332X</orcidid><orcidid>https://orcid.org/0000-0003-4656-2095</orcidid></search><sort><creationdate>20210728</creationdate><title>Vertical Nanowire Electrode Array for Enhanced Neurogenesis of Human Neural Stem Cells via Intracellular Electrical Stimulation</title><author>Kwon, Juyoung ; Lee, Jong Seung ; Lee, Jaejun ; Na, Jukwan ; Sung, Jaesuk ; Lee, Hyo-Jung ; Kwak, Hankyul ; Cheong, Eunji ; Cho, Seung-Woo ; Choi, Heon-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-73df54e17ec081a82a51da03efa37b80417f342ab8cd2e859d6786c56444125a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Juyoung</creatorcontrib><creatorcontrib>Lee, Jong Seung</creatorcontrib><creatorcontrib>Lee, Jaejun</creatorcontrib><creatorcontrib>Na, Jukwan</creatorcontrib><creatorcontrib>Sung, Jaesuk</creatorcontrib><creatorcontrib>Lee, Hyo-Jung</creatorcontrib><creatorcontrib>Kwak, Hankyul</creatorcontrib><creatorcontrib>Cheong, Eunji</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><creatorcontrib>Choi, Heon-Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Juyoung</au><au>Lee, Jong Seung</au><au>Lee, Jaejun</au><au>Na, Jukwan</au><au>Sung, Jaesuk</au><au>Lee, Hyo-Jung</au><au>Kwak, Hankyul</au><au>Cheong, Eunji</au><au>Cho, Seung-Woo</au><au>Choi, Heon-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertical Nanowire Electrode Array for Enhanced Neurogenesis of Human Neural Stem Cells via Intracellular Electrical Stimulation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-07-28</date><risdate>2021</risdate><volume>21</volume><issue>14</issue><spage>6343</spage><epage>6351</epage><pages>6343-6351</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Extracellular electrical stimulation (ES) can provide electrical potential from outside the cell membrane, but it is often ineffective due to interference from external factors such as culture medium resistance and membrane capacitance. To address this, we developed a vertical nanowire electrode array (VNEA) to directly provide intracellular electrical potential and current to cells through nanoelectrodes. Using this approach, the cell membrane resistivity and capacitance could be excluded, allowing effective ES. Human fetal neural stem cells (hfNSCs) were cultured on the VNEA for intracellular ES. Combining the structural properties of VNEA and VNEA-mediated ES, transient nanoscale perforation of the electrode was induced, promoting cell penetration and delivering current to the cell. Intracellular ES using VNEA improved the neuronal differentiation of hfNSCs more effectively than extracellular ES and facilitated electrophysiological functional maturation of hfNSCs because of the enhanced voltage-dependent ion-channel activity. The results demonstrate that VNEA with advanced nanoelectrodes serves as a highly effective culture and stimulation platform for stem-cell neurogenesis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33998792</pmid><doi>10.1021/acs.nanolett.0c04635</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8058-332X</orcidid><orcidid>https://orcid.org/0000-0003-4656-2095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2021-07, Vol.21 (14), p.6343-6351
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2528436848
source ACS Publications
title Vertical Nanowire Electrode Array for Enhanced Neurogenesis of Human Neural Stem Cells via Intracellular Electrical Stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertical%20Nanowire%20Electrode%20Array%20for%20Enhanced%20Neurogenesis%20of%20Human%20Neural%20Stem%20Cells%20via%20Intracellular%20Electrical%20Stimulation&rft.jtitle=Nano%20letters&rft.au=Kwon,%20Juyoung&rft.date=2021-07-28&rft.volume=21&rft.issue=14&rft.spage=6343&rft.epage=6351&rft.pages=6343-6351&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c04635&rft_dat=%3Cproquest_cross%3E2528436848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528436848&rft_id=info:pmid/33998792&rfr_iscdi=true