APOBEC3G rescues cells from the deleterious effects of DNA damage

Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2021-10, Vol.288 (20), p.6063-6077
Hauptverfasser: Botvinnik, Alexander, Shivam, Pushkar, Smith, Yoav, Sharma, Gunjan, Olshevsky, Udy, Moshel, Ofra, Manevitch, Zakhariya, Climent, Nuria, Oliva, Harold, Britan‐Rosich, Elena, Kotler, Moshe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6077
container_issue 20
container_start_page 6063
container_title The FEBS journal
container_volume 288
creator Botvinnik, Alexander
Shivam, Pushkar
Smith, Yoav
Sharma, Gunjan
Olshevsky, Udy
Moshel, Ofra
Manevitch, Zakhariya
Climent, Nuria
Oliva, Harold
Britan‐Rosich, Elena
Kotler, Moshe
description Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments. APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine > deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion.
doi_str_mv 10.1111/febs.16025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528436056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582732258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9AAl5E6Mz_NsdtblMYTlDBW2naN7rRrjNZkX17Mzs9eDCXN4cfDw8PQueU9Gl4NxaM71NFmDxAXRoLFgklk8Pfv3jtoBPvl4RwKbQ-Rh3OtdaS6C4aDB7nw_GIT7EDnzfgcQ5l6bF1dYU374ALKGEDblE3HoO1kG88ri2-fRjgIquyNzhFRzYrPZztbw-9TMbPo7toNp_ejwazKOeayyg2iQCeK0iIUZLmSvKM2SxhBReUkkIwoxMhi5xKoriJjUko45Qaqq0yOuM9dNXmrl39EYpu0mrhd2WzFYRyKZMsEVwRqQK9_EOXdeNWoV1QCYs5Cyeo61blrvbegU3XblFlbptSku6GTXfDpt_DBnyxj2xMBcUv_VkyANqCz0UJ23-i0sl4-NSGfgEUwH9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582732258</pqid></control><display><type>article</type><title>APOBEC3G rescues cells from the deleterious effects of DNA damage</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Botvinnik, Alexander ; Shivam, Pushkar ; Smith, Yoav ; Sharma, Gunjan ; Olshevsky, Udy ; Moshel, Ofra ; Manevitch, Zakhariya ; Climent, Nuria ; Oliva, Harold ; Britan‐Rosich, Elena ; Kotler, Moshe</creator><creatorcontrib>Botvinnik, Alexander ; Shivam, Pushkar ; Smith, Yoav ; Sharma, Gunjan ; Olshevsky, Udy ; Moshel, Ofra ; Manevitch, Zakhariya ; Climent, Nuria ; Oliva, Harold ; Britan‐Rosich, Elena ; Kotler, Moshe</creatorcontrib><description>Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments. APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine &gt; deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.16025</identifier><identifier>PMID: 33999509</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Apolipoprotein B ; Bromodeoxyuridine ; Cell survival ; Chemotherapy ; cytidine deaminases ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA repair ; Genomes ; Genotoxicity ; HIV ; Homologous recombination ; Homology ; Human immunodeficiency virus ; Ionizing radiation ; Irradiation ; Lethal dose ; Lymphoma ; Nucleotide excision repair ; Nucleotides ; Polypeptides ; Proteins ; Radiation ; Radiation damage ; Radiation dosage ; radiation resistance ; Repair ; RNA editing ; Transgenic mice ; Ultraviolet radiation ; UV irradiation</subject><ispartof>The FEBS journal, 2021-10, Vol.288 (20), p.6063-6077</ispartof><rights>2021 Federation of European Biochemical Societies</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>Copyright © 2021 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</citedby><cites>FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.16025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.16025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33999509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botvinnik, Alexander</creatorcontrib><creatorcontrib>Shivam, Pushkar</creatorcontrib><creatorcontrib>Smith, Yoav</creatorcontrib><creatorcontrib>Sharma, Gunjan</creatorcontrib><creatorcontrib>Olshevsky, Udy</creatorcontrib><creatorcontrib>Moshel, Ofra</creatorcontrib><creatorcontrib>Manevitch, Zakhariya</creatorcontrib><creatorcontrib>Climent, Nuria</creatorcontrib><creatorcontrib>Oliva, Harold</creatorcontrib><creatorcontrib>Britan‐Rosich, Elena</creatorcontrib><creatorcontrib>Kotler, Moshe</creatorcontrib><title>APOBEC3G rescues cells from the deleterious effects of DNA damage</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments. APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine &gt; deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion.</description><subject>Apolipoprotein B</subject><subject>Bromodeoxyuridine</subject><subject>Cell survival</subject><subject>Chemotherapy</subject><subject>cytidine deaminases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Genomes</subject><subject>Genotoxicity</subject><subject>HIV</subject><subject>Homologous recombination</subject><subject>Homology</subject><subject>Human immunodeficiency virus</subject><subject>Ionizing radiation</subject><subject>Irradiation</subject><subject>Lethal dose</subject><subject>Lymphoma</subject><subject>Nucleotide excision repair</subject><subject>Nucleotides</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>radiation resistance</subject><subject>Repair</subject><subject>RNA editing</subject><subject>Transgenic mice</subject><subject>Ultraviolet radiation</subject><subject>UV irradiation</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTix9AAl5E6Mz_NsdtblMYTlDBW2naN7rRrjNZkX17Mzs9eDCXN4cfDw8PQueU9Gl4NxaM71NFmDxAXRoLFgklk8Pfv3jtoBPvl4RwKbQ-Rh3OtdaS6C4aDB7nw_GIT7EDnzfgcQ5l6bF1dYU374ALKGEDblE3HoO1kG88ri2-fRjgIquyNzhFRzYrPZztbw-9TMbPo7toNp_ejwazKOeayyg2iQCeK0iIUZLmSvKM2SxhBReUkkIwoxMhi5xKoriJjUko45Qaqq0yOuM9dNXmrl39EYpu0mrhd2WzFYRyKZMsEVwRqQK9_EOXdeNWoV1QCYs5Cyeo61blrvbegU3XblFlbptSku6GTXfDpt_DBnyxj2xMBcUv_VkyANqCz0UJ23-i0sl4-NSGfgEUwH9b</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Botvinnik, Alexander</creator><creator>Shivam, Pushkar</creator><creator>Smith, Yoav</creator><creator>Sharma, Gunjan</creator><creator>Olshevsky, Udy</creator><creator>Moshel, Ofra</creator><creator>Manevitch, Zakhariya</creator><creator>Climent, Nuria</creator><creator>Oliva, Harold</creator><creator>Britan‐Rosich, Elena</creator><creator>Kotler, Moshe</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>APOBEC3G rescues cells from the deleterious effects of DNA damage</title><author>Botvinnik, Alexander ; Shivam, Pushkar ; Smith, Yoav ; Sharma, Gunjan ; Olshevsky, Udy ; Moshel, Ofra ; Manevitch, Zakhariya ; Climent, Nuria ; Oliva, Harold ; Britan‐Rosich, Elena ; Kotler, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apolipoprotein B</topic><topic>Bromodeoxyuridine</topic><topic>Cell survival</topic><topic>Chemotherapy</topic><topic>cytidine deaminases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Genomes</topic><topic>Genotoxicity</topic><topic>HIV</topic><topic>Homologous recombination</topic><topic>Homology</topic><topic>Human immunodeficiency virus</topic><topic>Ionizing radiation</topic><topic>Irradiation</topic><topic>Lethal dose</topic><topic>Lymphoma</topic><topic>Nucleotide excision repair</topic><topic>Nucleotides</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>radiation resistance</topic><topic>Repair</topic><topic>RNA editing</topic><topic>Transgenic mice</topic><topic>Ultraviolet radiation</topic><topic>UV irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botvinnik, Alexander</creatorcontrib><creatorcontrib>Shivam, Pushkar</creatorcontrib><creatorcontrib>Smith, Yoav</creatorcontrib><creatorcontrib>Sharma, Gunjan</creatorcontrib><creatorcontrib>Olshevsky, Udy</creatorcontrib><creatorcontrib>Moshel, Ofra</creatorcontrib><creatorcontrib>Manevitch, Zakhariya</creatorcontrib><creatorcontrib>Climent, Nuria</creatorcontrib><creatorcontrib>Oliva, Harold</creatorcontrib><creatorcontrib>Britan‐Rosich, Elena</creatorcontrib><creatorcontrib>Kotler, Moshe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botvinnik, Alexander</au><au>Shivam, Pushkar</au><au>Smith, Yoav</au><au>Sharma, Gunjan</au><au>Olshevsky, Udy</au><au>Moshel, Ofra</au><au>Manevitch, Zakhariya</au><au>Climent, Nuria</au><au>Oliva, Harold</au><au>Britan‐Rosich, Elena</au><au>Kotler, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APOBEC3G rescues cells from the deleterious effects of DNA damage</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2021-10</date><risdate>2021</risdate><volume>288</volume><issue>20</issue><spage>6063</spage><epage>6077</epage><pages>6063-6077</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments. APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine &gt; deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33999509</pmid><doi>10.1111/febs.16025</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2021-10, Vol.288 (20), p.6063-6077
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2528436056
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Apolipoprotein B
Bromodeoxyuridine
Cell survival
Chemotherapy
cytidine deaminases
Deoxyribonucleic acid
DNA
DNA damage
DNA repair
Genomes
Genotoxicity
HIV
Homologous recombination
Homology
Human immunodeficiency virus
Ionizing radiation
Irradiation
Lethal dose
Lymphoma
Nucleotide excision repair
Nucleotides
Polypeptides
Proteins
Radiation
Radiation damage
Radiation dosage
radiation resistance
Repair
RNA editing
Transgenic mice
Ultraviolet radiation
UV irradiation
title APOBEC3G rescues cells from the deleterious effects of DNA damage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APOBEC3G%20rescues%20cells%20from%20the%20deleterious%20effects%20of%20DNA%20damage&rft.jtitle=The%20FEBS%20journal&rft.au=Botvinnik,%20Alexander&rft.date=2021-10&rft.volume=288&rft.issue=20&rft.spage=6063&rft.epage=6077&rft.pages=6063-6077&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.16025&rft_dat=%3Cproquest_cross%3E2582732258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582732258&rft_id=info:pmid/33999509&rfr_iscdi=true