APOBEC3G rescues cells from the deleterious effects of DNA damage
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse larg...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2021-10, Vol.288 (20), p.6063-6077 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6077 |
---|---|
container_issue | 20 |
container_start_page | 6063 |
container_title | The FEBS journal |
container_volume | 288 |
creator | Botvinnik, Alexander Shivam, Pushkar Smith, Yoav Sharma, Gunjan Olshevsky, Udy Moshel, Ofra Manevitch, Zakhariya Climent, Nuria Oliva, Harold Britan‐Rosich, Elena Kotler, Moshe |
description | Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.
APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine > deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion. |
doi_str_mv | 10.1111/febs.16025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528436056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582732258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9AAl5E6Mz_NsdtblMYTlDBW2naN7rRrjNZkX17Mzs9eDCXN4cfDw8PQueU9Gl4NxaM71NFmDxAXRoLFgklk8Pfv3jtoBPvl4RwKbQ-Rh3OtdaS6C4aDB7nw_GIT7EDnzfgcQ5l6bF1dYU374ALKGEDblE3HoO1kG88ri2-fRjgIquyNzhFRzYrPZztbw-9TMbPo7toNp_ejwazKOeayyg2iQCeK0iIUZLmSvKM2SxhBReUkkIwoxMhi5xKoriJjUko45Qaqq0yOuM9dNXmrl39EYpu0mrhd2WzFYRyKZMsEVwRqQK9_EOXdeNWoV1QCYs5Cyeo61blrvbegU3XblFlbptSku6GTXfDpt_DBnyxj2xMBcUv_VkyANqCz0UJ23-i0sl4-NSGfgEUwH9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582732258</pqid></control><display><type>article</type><title>APOBEC3G rescues cells from the deleterious effects of DNA damage</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Botvinnik, Alexander ; Shivam, Pushkar ; Smith, Yoav ; Sharma, Gunjan ; Olshevsky, Udy ; Moshel, Ofra ; Manevitch, Zakhariya ; Climent, Nuria ; Oliva, Harold ; Britan‐Rosich, Elena ; Kotler, Moshe</creator><creatorcontrib>Botvinnik, Alexander ; Shivam, Pushkar ; Smith, Yoav ; Sharma, Gunjan ; Olshevsky, Udy ; Moshel, Ofra ; Manevitch, Zakhariya ; Climent, Nuria ; Oliva, Harold ; Britan‐Rosich, Elena ; Kotler, Moshe</creatorcontrib><description>Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.
APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine > deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.16025</identifier><identifier>PMID: 33999509</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Apolipoprotein B ; Bromodeoxyuridine ; Cell survival ; Chemotherapy ; cytidine deaminases ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA repair ; Genomes ; Genotoxicity ; HIV ; Homologous recombination ; Homology ; Human immunodeficiency virus ; Ionizing radiation ; Irradiation ; Lethal dose ; Lymphoma ; Nucleotide excision repair ; Nucleotides ; Polypeptides ; Proteins ; Radiation ; Radiation damage ; Radiation dosage ; radiation resistance ; Repair ; RNA editing ; Transgenic mice ; Ultraviolet radiation ; UV irradiation</subject><ispartof>The FEBS journal, 2021-10, Vol.288 (20), p.6063-6077</ispartof><rights>2021 Federation of European Biochemical Societies</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>Copyright © 2021 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</citedby><cites>FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.16025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.16025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33999509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botvinnik, Alexander</creatorcontrib><creatorcontrib>Shivam, Pushkar</creatorcontrib><creatorcontrib>Smith, Yoav</creatorcontrib><creatorcontrib>Sharma, Gunjan</creatorcontrib><creatorcontrib>Olshevsky, Udy</creatorcontrib><creatorcontrib>Moshel, Ofra</creatorcontrib><creatorcontrib>Manevitch, Zakhariya</creatorcontrib><creatorcontrib>Climent, Nuria</creatorcontrib><creatorcontrib>Oliva, Harold</creatorcontrib><creatorcontrib>Britan‐Rosich, Elena</creatorcontrib><creatorcontrib>Kotler, Moshe</creatorcontrib><title>APOBEC3G rescues cells from the deleterious effects of DNA damage</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.
APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine > deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion.</description><subject>Apolipoprotein B</subject><subject>Bromodeoxyuridine</subject><subject>Cell survival</subject><subject>Chemotherapy</subject><subject>cytidine deaminases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Genomes</subject><subject>Genotoxicity</subject><subject>HIV</subject><subject>Homologous recombination</subject><subject>Homology</subject><subject>Human immunodeficiency virus</subject><subject>Ionizing radiation</subject><subject>Irradiation</subject><subject>Lethal dose</subject><subject>Lymphoma</subject><subject>Nucleotide excision repair</subject><subject>Nucleotides</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>radiation resistance</subject><subject>Repair</subject><subject>RNA editing</subject><subject>Transgenic mice</subject><subject>Ultraviolet radiation</subject><subject>UV irradiation</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTix9AAl5E6Mz_NsdtblMYTlDBW2naN7rRrjNZkX17Mzs9eDCXN4cfDw8PQueU9Gl4NxaM71NFmDxAXRoLFgklk8Pfv3jtoBPvl4RwKbQ-Rh3OtdaS6C4aDB7nw_GIT7EDnzfgcQ5l6bF1dYU374ALKGEDblE3HoO1kG88ri2-fRjgIquyNzhFRzYrPZztbw-9TMbPo7toNp_ejwazKOeayyg2iQCeK0iIUZLmSvKM2SxhBReUkkIwoxMhi5xKoriJjUko45Qaqq0yOuM9dNXmrl39EYpu0mrhd2WzFYRyKZMsEVwRqQK9_EOXdeNWoV1QCYs5Cyeo61blrvbegU3XblFlbptSku6GTXfDpt_DBnyxj2xMBcUv_VkyANqCz0UJ23-i0sl4-NSGfgEUwH9b</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Botvinnik, Alexander</creator><creator>Shivam, Pushkar</creator><creator>Smith, Yoav</creator><creator>Sharma, Gunjan</creator><creator>Olshevsky, Udy</creator><creator>Moshel, Ofra</creator><creator>Manevitch, Zakhariya</creator><creator>Climent, Nuria</creator><creator>Oliva, Harold</creator><creator>Britan‐Rosich, Elena</creator><creator>Kotler, Moshe</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>APOBEC3G rescues cells from the deleterious effects of DNA damage</title><author>Botvinnik, Alexander ; Shivam, Pushkar ; Smith, Yoav ; Sharma, Gunjan ; Olshevsky, Udy ; Moshel, Ofra ; Manevitch, Zakhariya ; Climent, Nuria ; Oliva, Harold ; Britan‐Rosich, Elena ; Kotler, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3935-7b84e3c6e80b651c653a2fa82d34110d42b9845dc15063b7bb812311b19f6b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apolipoprotein B</topic><topic>Bromodeoxyuridine</topic><topic>Cell survival</topic><topic>Chemotherapy</topic><topic>cytidine deaminases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Genomes</topic><topic>Genotoxicity</topic><topic>HIV</topic><topic>Homologous recombination</topic><topic>Homology</topic><topic>Human immunodeficiency virus</topic><topic>Ionizing radiation</topic><topic>Irradiation</topic><topic>Lethal dose</topic><topic>Lymphoma</topic><topic>Nucleotide excision repair</topic><topic>Nucleotides</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>radiation resistance</topic><topic>Repair</topic><topic>RNA editing</topic><topic>Transgenic mice</topic><topic>Ultraviolet radiation</topic><topic>UV irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botvinnik, Alexander</creatorcontrib><creatorcontrib>Shivam, Pushkar</creatorcontrib><creatorcontrib>Smith, Yoav</creatorcontrib><creatorcontrib>Sharma, Gunjan</creatorcontrib><creatorcontrib>Olshevsky, Udy</creatorcontrib><creatorcontrib>Moshel, Ofra</creatorcontrib><creatorcontrib>Manevitch, Zakhariya</creatorcontrib><creatorcontrib>Climent, Nuria</creatorcontrib><creatorcontrib>Oliva, Harold</creatorcontrib><creatorcontrib>Britan‐Rosich, Elena</creatorcontrib><creatorcontrib>Kotler, Moshe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botvinnik, Alexander</au><au>Shivam, Pushkar</au><au>Smith, Yoav</au><au>Sharma, Gunjan</au><au>Olshevsky, Udy</au><au>Moshel, Ofra</au><au>Manevitch, Zakhariya</au><au>Climent, Nuria</au><au>Oliva, Harold</au><au>Britan‐Rosich, Elena</au><au>Kotler, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APOBEC3G rescues cells from the deleterious effects of DNA damage</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2021-10</date><risdate>2021</risdate><volume>288</volume><issue>20</issue><spage>6063</spage><epage>6077</epage><pages>6063-6077</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like 3G (hA3G), a member of the APOBEC family, was described as an anti‐HIV‐1 restriction factor, deaminating reverse transcripts of the HIV‐1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B‐cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double‐strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.
APOBEC3G promotes DNA damage repair following ultraviolet (UV) irradiation. Following induction of DNA lesions by bromodeoxyuridine + UV, APOBEC3G (A3G) expression is associated with up‐regulation of nucleotide excision repair‐related repair proteins. Silencing of A3G reduces the ability of A3G to repair the bromodeoxyuridine + UV‐induced lesions. Proposed model for A3G activity during the repair of UV lesion via nucleotide excision repair includes deoxycytidine > deoxyuridine deamination at close proximity to the UV‐mediated dimers, followed by recruitment of N‐glycosylase and subsequent excision of the single‐strand DNA fragment bearing the UV lesion.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33999509</pmid><doi>10.1111/febs.16025</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2021-10, Vol.288 (20), p.6063-6077 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_2528436056 |
source | Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | Apolipoprotein B Bromodeoxyuridine Cell survival Chemotherapy cytidine deaminases Deoxyribonucleic acid DNA DNA damage DNA repair Genomes Genotoxicity HIV Homologous recombination Homology Human immunodeficiency virus Ionizing radiation Irradiation Lethal dose Lymphoma Nucleotide excision repair Nucleotides Polypeptides Proteins Radiation Radiation damage Radiation dosage radiation resistance Repair RNA editing Transgenic mice Ultraviolet radiation UV irradiation |
title | APOBEC3G rescues cells from the deleterious effects of DNA damage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APOBEC3G%20rescues%20cells%20from%20the%20deleterious%20effects%20of%20DNA%20damage&rft.jtitle=The%20FEBS%20journal&rft.au=Botvinnik,%20Alexander&rft.date=2021-10&rft.volume=288&rft.issue=20&rft.spage=6063&rft.epage=6077&rft.pages=6063-6077&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.16025&rft_dat=%3Cproquest_cross%3E2582732258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582732258&rft_id=info:pmid/33999509&rfr_iscdi=true |