Layered Intercalation Materials

2D layered materials typically feature strong in‐plane covalent chemical bonding within each atomic layer and weak out‐of‐plane van der Waals (vdW) interactions between adjacent layers. The non‐bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-06, Vol.33 (25), p.e2004557-n/a
Hauptverfasser: Zhou, Jingyuan, Lin, Zhaoyang, Ren, Huaying, Duan, Xidong, Shakir, Imran, Huang, Yu, Duan, Xiangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page e2004557
container_title Advanced materials (Weinheim)
container_volume 33
creator Zhou, Jingyuan
Lin, Zhaoyang
Ren, Huaying
Duan, Xidong
Shakir, Imran
Huang, Yu
Duan, Xiangfeng
description 2D layered materials typically feature strong in‐plane covalent chemical bonding within each atomic layer and weak out‐of‐plane van der Waals (vdW) interactions between adjacent layers. The non‐bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species may be inserted without breaking the in‐plane covalent bonds. By tailoring the composition, size, structure, and electronic properties of the intercalated guest species and the hosting layered materials, an expansive family of layered intercalation materials may be produced with highly variable compositional and structural features as well as widely tunable physical/chemical properties, invoking unprecedented opportunities in fundamental studies of property modulation and potential applications in diverse technologies, including electronics, optics, superconductors, thermoelectrics, catalysis, and energy storage. Here, the principles and protocols for various intercalation methods, including wet chemical intercalation, gas‐phase intercalation, electrochemical intercalation, and ion‐exchange intercalation, are comprehensively reviewed and how the intercalated species alter the crystal structure and the interlayer coupling of the host 2D layered materials, introducing unusual physical and chemical properties and enabling devices with superior performance or unique functions, is discussed. To conclude, a brief summary on future research opportunities and emerging challenges in the layered intercalation materials is given. The intercalation of layered materials produces a rich class of materials with tunable structural and electronic properties for both fundamental studies and practical technologies. The key intercalation methods for preparing layered intercalation materials are summarized, the associated modulation of multiple properties is reviewed, and further prospects regarding the future challenges and opportunities in layered intercalation materials are considered.
doi_str_mv 10.1002/adma.202004557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528184562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543635857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4397-23bedd34c620e28b2db3ae96f713a92a4c382d86b9ae6e4816f511fd7dd8d51b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMotlavHrXgxcvWvDc5lvoqtHjRc8huZmHLPmqyi_Tfm7K1ghdPw8A3H8OH0DXBM4IxfbCutjOKKcZciPQEjYmgJOFYi1M0xpqJREuuRugihA3GWEssz9GIMa04kXyMbld2Bx7cdNl04HNb2a5sm-naxq20VbhEZ0UccHWYE_Tx_PS-eE1Wby_LxXyV5JzpNKEsA-cYzyXFQFVGXcYsaFmkhFlNLc-Zok7JTFuQwBWRhSCkcKlzygmSsQm6H7xb3372EDpTlyGHqrINtH0wVFBFFBeSRvTuD7ppe9_E7yLFmWRCiTRSs4HKfRuCh8JsfVlbvzMEm306s09njuniwc1B22c1uCP-0yoCegC-ygp2_-jM_HE9_5V_AzBmeGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543635857</pqid></control><display><type>article</type><title>Layered Intercalation Materials</title><source>Access via Wiley Online Library</source><creator>Zhou, Jingyuan ; Lin, Zhaoyang ; Ren, Huaying ; Duan, Xidong ; Shakir, Imran ; Huang, Yu ; Duan, Xiangfeng</creator><creatorcontrib>Zhou, Jingyuan ; Lin, Zhaoyang ; Ren, Huaying ; Duan, Xidong ; Shakir, Imran ; Huang, Yu ; Duan, Xiangfeng</creatorcontrib><description>2D layered materials typically feature strong in‐plane covalent chemical bonding within each atomic layer and weak out‐of‐plane van der Waals (vdW) interactions between adjacent layers. The non‐bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species may be inserted without breaking the in‐plane covalent bonds. By tailoring the composition, size, structure, and electronic properties of the intercalated guest species and the hosting layered materials, an expansive family of layered intercalation materials may be produced with highly variable compositional and structural features as well as widely tunable physical/chemical properties, invoking unprecedented opportunities in fundamental studies of property modulation and potential applications in diverse technologies, including electronics, optics, superconductors, thermoelectrics, catalysis, and energy storage. Here, the principles and protocols for various intercalation methods, including wet chemical intercalation, gas‐phase intercalation, electrochemical intercalation, and ion‐exchange intercalation, are comprehensively reviewed and how the intercalated species alter the crystal structure and the interlayer coupling of the host 2D layered materials, introducing unusual physical and chemical properties and enabling devices with superior performance or unique functions, is discussed. To conclude, a brief summary on future research opportunities and emerging challenges in the layered intercalation materials is given. The intercalation of layered materials produces a rich class of materials with tunable structural and electronic properties for both fundamental studies and practical technologies. The key intercalation methods for preparing layered intercalation materials are summarized, the associated modulation of multiple properties is reviewed, and further prospects regarding the future challenges and opportunities in layered intercalation materials are considered.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202004557</identifier><identifier>PMID: 33984164</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D layered materials ; Bonding strength ; Chemical bonds ; Chemical properties ; Covalent bonds ; Crystal structure ; Energy storage ; in situ characterization ; Intercalation ; Interlayers ; Layered materials ; Materials science ; phase transitions ; property modulation ; Superconductors</subject><ispartof>Advanced materials (Weinheim), 2021-06, Vol.33 (25), p.e2004557-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4397-23bedd34c620e28b2db3ae96f713a92a4c382d86b9ae6e4816f511fd7dd8d51b3</citedby><cites>FETCH-LOGICAL-c4397-23bedd34c620e28b2db3ae96f713a92a4c382d86b9ae6e4816f511fd7dd8d51b3</cites><orcidid>0000-0002-4321-6288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202004557$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202004557$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33984164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jingyuan</creatorcontrib><creatorcontrib>Lin, Zhaoyang</creatorcontrib><creatorcontrib>Ren, Huaying</creatorcontrib><creatorcontrib>Duan, Xidong</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><title>Layered Intercalation Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>2D layered materials typically feature strong in‐plane covalent chemical bonding within each atomic layer and weak out‐of‐plane van der Waals (vdW) interactions between adjacent layers. The non‐bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species may be inserted without breaking the in‐plane covalent bonds. By tailoring the composition, size, structure, and electronic properties of the intercalated guest species and the hosting layered materials, an expansive family of layered intercalation materials may be produced with highly variable compositional and structural features as well as widely tunable physical/chemical properties, invoking unprecedented opportunities in fundamental studies of property modulation and potential applications in diverse technologies, including electronics, optics, superconductors, thermoelectrics, catalysis, and energy storage. Here, the principles and protocols for various intercalation methods, including wet chemical intercalation, gas‐phase intercalation, electrochemical intercalation, and ion‐exchange intercalation, are comprehensively reviewed and how the intercalated species alter the crystal structure and the interlayer coupling of the host 2D layered materials, introducing unusual physical and chemical properties and enabling devices with superior performance or unique functions, is discussed. To conclude, a brief summary on future research opportunities and emerging challenges in the layered intercalation materials is given. The intercalation of layered materials produces a rich class of materials with tunable structural and electronic properties for both fundamental studies and practical technologies. The key intercalation methods for preparing layered intercalation materials are summarized, the associated modulation of multiple properties is reviewed, and further prospects regarding the future challenges and opportunities in layered intercalation materials are considered.</description><subject>2D layered materials</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Covalent bonds</subject><subject>Crystal structure</subject><subject>Energy storage</subject><subject>in situ characterization</subject><subject>Intercalation</subject><subject>Interlayers</subject><subject>Layered materials</subject><subject>Materials science</subject><subject>phase transitions</subject><subject>property modulation</subject><subject>Superconductors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMotlavHrXgxcvWvDc5lvoqtHjRc8huZmHLPmqyi_Tfm7K1ghdPw8A3H8OH0DXBM4IxfbCutjOKKcZciPQEjYmgJOFYi1M0xpqJREuuRugihA3GWEssz9GIMa04kXyMbld2Bx7cdNl04HNb2a5sm-naxq20VbhEZ0UccHWYE_Tx_PS-eE1Wby_LxXyV5JzpNKEsA-cYzyXFQFVGXcYsaFmkhFlNLc-Zok7JTFuQwBWRhSCkcKlzygmSsQm6H7xb3372EDpTlyGHqrINtH0wVFBFFBeSRvTuD7ppe9_E7yLFmWRCiTRSs4HKfRuCh8JsfVlbvzMEm306s09njuniwc1B22c1uCP-0yoCegC-ygp2_-jM_HE9_5V_AzBmeGE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhou, Jingyuan</creator><creator>Lin, Zhaoyang</creator><creator>Ren, Huaying</creator><creator>Duan, Xidong</creator><creator>Shakir, Imran</creator><creator>Huang, Yu</creator><creator>Duan, Xiangfeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid></search><sort><creationdate>20210601</creationdate><title>Layered Intercalation Materials</title><author>Zhou, Jingyuan ; Lin, Zhaoyang ; Ren, Huaying ; Duan, Xidong ; Shakir, Imran ; Huang, Yu ; Duan, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4397-23bedd34c620e28b2db3ae96f713a92a4c382d86b9ae6e4816f511fd7dd8d51b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D layered materials</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Covalent bonds</topic><topic>Crystal structure</topic><topic>Energy storage</topic><topic>in situ characterization</topic><topic>Intercalation</topic><topic>Interlayers</topic><topic>Layered materials</topic><topic>Materials science</topic><topic>phase transitions</topic><topic>property modulation</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jingyuan</creatorcontrib><creatorcontrib>Lin, Zhaoyang</creatorcontrib><creatorcontrib>Ren, Huaying</creatorcontrib><creatorcontrib>Duan, Xidong</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jingyuan</au><au>Lin, Zhaoyang</au><au>Ren, Huaying</au><au>Duan, Xidong</au><au>Shakir, Imran</au><au>Huang, Yu</au><au>Duan, Xiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layered Intercalation Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>33</volume><issue>25</issue><spage>e2004557</spage><epage>n/a</epage><pages>e2004557-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>2D layered materials typically feature strong in‐plane covalent chemical bonding within each atomic layer and weak out‐of‐plane van der Waals (vdW) interactions between adjacent layers. The non‐bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species may be inserted without breaking the in‐plane covalent bonds. By tailoring the composition, size, structure, and electronic properties of the intercalated guest species and the hosting layered materials, an expansive family of layered intercalation materials may be produced with highly variable compositional and structural features as well as widely tunable physical/chemical properties, invoking unprecedented opportunities in fundamental studies of property modulation and potential applications in diverse technologies, including electronics, optics, superconductors, thermoelectrics, catalysis, and energy storage. Here, the principles and protocols for various intercalation methods, including wet chemical intercalation, gas‐phase intercalation, electrochemical intercalation, and ion‐exchange intercalation, are comprehensively reviewed and how the intercalated species alter the crystal structure and the interlayer coupling of the host 2D layered materials, introducing unusual physical and chemical properties and enabling devices with superior performance or unique functions, is discussed. To conclude, a brief summary on future research opportunities and emerging challenges in the layered intercalation materials is given. The intercalation of layered materials produces a rich class of materials with tunable structural and electronic properties for both fundamental studies and practical technologies. The key intercalation methods for preparing layered intercalation materials are summarized, the associated modulation of multiple properties is reviewed, and further prospects regarding the future challenges and opportunities in layered intercalation materials are considered.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33984164</pmid><doi>10.1002/adma.202004557</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-06, Vol.33 (25), p.e2004557-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2528184562
source Access via Wiley Online Library
subjects 2D layered materials
Bonding strength
Chemical bonds
Chemical properties
Covalent bonds
Crystal structure
Energy storage
in situ characterization
Intercalation
Interlayers
Layered materials
Materials science
phase transitions
property modulation
Superconductors
title Layered Intercalation Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layered%20Intercalation%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhou,%20Jingyuan&rft.date=2021-06-01&rft.volume=33&rft.issue=25&rft.spage=e2004557&rft.epage=n/a&rft.pages=e2004557-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202004557&rft_dat=%3Cproquest_cross%3E2543635857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543635857&rft_id=info:pmid/33984164&rfr_iscdi=true