Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis

GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2021-05, Vol.28 (5), p.1-12
Hauptverfasser: Zheng, Lvqin, Liu, Zhe, Wang, Yan, Yang, Fan, Wang, Jinrui, Huang, Wenjie, Qin, Jiao, Tian, Min, Cai, Xiaotang, Liu, Xiaohui, Mo, Xianming, Gao, Ning, Jia, Da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 5
container_start_page 1
container_title Nature structural & molecular biology
container_volume 28
creator Zheng, Lvqin
Liu, Zhe
Wang, Yan
Yang, Fan
Wang, Jinrui
Huang, Wenjie
Qin, Jiao
Tian, Min
Cai, Xiaotang
Liu, Xiaohui
Mo, Xianming
Gao, Ning
Jia, Da
description GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB. Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity.
doi_str_mv 10.1038/s41594-021-00591-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528180949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661715711</galeid><sourcerecordid>A661715711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</originalsourceid><addsrcrecordid>eNp9kttu1DAQhiMEoqXwAlwgS9zARVrb8fFyWcq2UitWHK4tx2tvUyXx4kmgveMdeEOepA7bgxYhZFljeb5_NL89RfGS4EOCK3UEjHDNSkxJiTHXpNSPin3CGS-1Vvzx_VlXe8UzgEuMKeeyelrsVZVWgnO6X7h5uo7l8TmCIY1uGJMHFAO6GDvbo8X5cjn7_fPXFN8hF7tN669Q8t-9bdFF_IGcb1tAnW36IW-0eL8ss66P4HO68xEGCw08L54E24J_cRsPiq8fjr_MT8qzj4vT-eysdJzRoXRV0K7SMvBaWmKZJc6LGjNHmRBU1WGlMKudEnUQihNnlZIhECmCkLLKxg6KN9u6mxS_jR4G0zUwtWh7H0cwlFNFFNZMZ_T1X-hlHFOfu5sowWR-WPpArW3rTdOHOCTrpqJmJgSRhEtCMnX4Dyqvle8aF3sfmny_I3i7I8jM4K-GtR0BzOnnT7ss3bIuRYDkg9mkprPp2hBspikw2ykweQrMnykwk7tXt-7GuvOre8ndt2eg2gKQU_3apwf7_yl7A9jculQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526475942</pqid></control><display><type>article</type><title>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</title><source>MEDLINE</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Lvqin ; Liu, Zhe ; Wang, Yan ; Yang, Fan ; Wang, Jinrui ; Huang, Wenjie ; Qin, Jiao ; Tian, Min ; Cai, Xiaotang ; Liu, Xiaohui ; Mo, Xianming ; Gao, Ning ; Jia, Da</creator><creatorcontrib>Zheng, Lvqin ; Liu, Zhe ; Wang, Yan ; Yang, Fan ; Wang, Jinrui ; Huang, Wenjie ; Qin, Jiao ; Tian, Min ; Cai, Xiaotang ; Liu, Xiaohui ; Mo, Xianming ; Gao, Ning ; Jia, Da</creatorcontrib><description>GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB. Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-021-00591-9</identifier><identifier>PMID: 33986552</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/28 ; 13/1 ; 631/45/221 ; 631/535/1258/1259 ; 64/116 ; 692/699 ; 82/16 ; 82/58 ; Animals ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Carbohydrate metabolism ; Catalytic activity ; Cell research ; Cellular control mechanisms ; Cellular structure ; Cryoelectron Microscopy ; Functional analysis ; GDP-mannose ; Glycosylation ; Guanosine diphosphate ; Guanosine Diphosphate Mannose - metabolism ; HEK293 Cells ; Homeostasis ; Humans ; Life Sciences ; Mannose ; Membrane Biology ; Metabolites ; Muscles ; Mutation ; Nucleotidyltransferases - chemistry ; Nucleotidyltransferases - metabolism ; Phenotypes ; Physiological aspects ; Protein Binding ; Protein Domains ; Protein Structure ; Proteins ; Purine nucleotides ; Structure ; Structure-function relationships ; Synthesis ; Zebrafish</subject><ispartof>Nature structural &amp; molecular biology, 2021-05, Vol.28 (5), p.1-12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</citedby><cites>FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</cites><orcidid>0000-0002-2205-1998 ; 0000-0003-3067-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-021-00591-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-021-00591-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33986552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Lvqin</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Qin, Jiao</creatorcontrib><creatorcontrib>Tian, Min</creatorcontrib><creatorcontrib>Cai, Xiaotang</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Mo, Xianming</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Jia, Da</creatorcontrib><title>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB. Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity.</description><subject>101/28</subject><subject>13/1</subject><subject>631/45/221</subject><subject>631/535/1258/1259</subject><subject>64/116</subject><subject>692/699</subject><subject>82/16</subject><subject>82/58</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrate metabolism</subject><subject>Catalytic activity</subject><subject>Cell research</subject><subject>Cellular control mechanisms</subject><subject>Cellular structure</subject><subject>Cryoelectron Microscopy</subject><subject>Functional analysis</subject><subject>GDP-mannose</subject><subject>Glycosylation</subject><subject>Guanosine diphosphate</subject><subject>Guanosine Diphosphate Mannose - metabolism</subject><subject>HEK293 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mannose</subject><subject>Membrane Biology</subject><subject>Metabolites</subject><subject>Muscles</subject><subject>Mutation</subject><subject>Nucleotidyltransferases - chemistry</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Purine nucleotides</subject><subject>Structure</subject><subject>Structure-function relationships</subject><subject>Synthesis</subject><subject>Zebrafish</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kttu1DAQhiMEoqXwAlwgS9zARVrb8fFyWcq2UitWHK4tx2tvUyXx4kmgveMdeEOepA7bgxYhZFljeb5_NL89RfGS4EOCK3UEjHDNSkxJiTHXpNSPin3CGS-1Vvzx_VlXe8UzgEuMKeeyelrsVZVWgnO6X7h5uo7l8TmCIY1uGJMHFAO6GDvbo8X5cjn7_fPXFN8hF7tN669Q8t-9bdFF_IGcb1tAnW36IW-0eL8ss66P4HO68xEGCw08L54E24J_cRsPiq8fjr_MT8qzj4vT-eysdJzRoXRV0K7SMvBaWmKZJc6LGjNHmRBU1WGlMKudEnUQihNnlZIhECmCkLLKxg6KN9u6mxS_jR4G0zUwtWh7H0cwlFNFFNZMZ_T1X-hlHFOfu5sowWR-WPpArW3rTdOHOCTrpqJmJgSRhEtCMnX4Dyqvle8aF3sfmny_I3i7I8jM4K-GtR0BzOnnT7ss3bIuRYDkg9mkprPp2hBspikw2ykweQrMnykwk7tXt-7GuvOre8ndt2eg2gKQU_3apwf7_yl7A9jculQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zheng, Lvqin</creator><creator>Liu, Zhe</creator><creator>Wang, Yan</creator><creator>Yang, Fan</creator><creator>Wang, Jinrui</creator><creator>Huang, Wenjie</creator><creator>Qin, Jiao</creator><creator>Tian, Min</creator><creator>Cai, Xiaotang</creator><creator>Liu, Xiaohui</creator><creator>Mo, Xianming</creator><creator>Gao, Ning</creator><creator>Jia, Da</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2205-1998</orcidid><orcidid>https://orcid.org/0000-0003-3067-9993</orcidid></search><sort><creationdate>20210501</creationdate><title>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</title><author>Zheng, Lvqin ; Liu, Zhe ; Wang, Yan ; Yang, Fan ; Wang, Jinrui ; Huang, Wenjie ; Qin, Jiao ; Tian, Min ; Cai, Xiaotang ; Liu, Xiaohui ; Mo, Xianming ; Gao, Ning ; Jia, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>13/1</topic><topic>631/45/221</topic><topic>631/535/1258/1259</topic><topic>64/116</topic><topic>692/699</topic><topic>82/16</topic><topic>82/58</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrate metabolism</topic><topic>Catalytic activity</topic><topic>Cell research</topic><topic>Cellular control mechanisms</topic><topic>Cellular structure</topic><topic>Cryoelectron Microscopy</topic><topic>Functional analysis</topic><topic>GDP-mannose</topic><topic>Glycosylation</topic><topic>Guanosine diphosphate</topic><topic>Guanosine Diphosphate Mannose - metabolism</topic><topic>HEK293 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mannose</topic><topic>Membrane Biology</topic><topic>Metabolites</topic><topic>Muscles</topic><topic>Mutation</topic><topic>Nucleotidyltransferases - chemistry</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Purine nucleotides</topic><topic>Structure</topic><topic>Structure-function relationships</topic><topic>Synthesis</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lvqin</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Qin, Jiao</creatorcontrib><creatorcontrib>Tian, Min</creatorcontrib><creatorcontrib>Cai, Xiaotang</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Mo, Xianming</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Jia, Da</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Lvqin</au><au>Liu, Zhe</au><au>Wang, Yan</au><au>Yang, Fan</au><au>Wang, Jinrui</au><au>Huang, Wenjie</au><au>Qin, Jiao</au><au>Tian, Min</au><au>Cai, Xiaotang</au><au>Liu, Xiaohui</au><au>Mo, Xianming</au><au>Gao, Ning</au><au>Jia, Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>5</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB. Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33986552</pmid><doi>10.1038/s41594-021-00591-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2205-1998</orcidid><orcidid>https://orcid.org/0000-0003-3067-9993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2021-05, Vol.28 (5), p.1-12
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_2528180949
source MEDLINE; Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings
subjects 101/28
13/1
631/45/221
631/535/1258/1259
64/116
692/699
82/16
82/58
Animals
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Carbohydrate metabolism
Catalytic activity
Cell research
Cellular control mechanisms
Cellular structure
Cryoelectron Microscopy
Functional analysis
GDP-mannose
Glycosylation
Guanosine diphosphate
Guanosine Diphosphate Mannose - metabolism
HEK293 Cells
Homeostasis
Humans
Life Sciences
Mannose
Membrane Biology
Metabolites
Muscles
Mutation
Nucleotidyltransferases - chemistry
Nucleotidyltransferases - metabolism
Phenotypes
Physiological aspects
Protein Binding
Protein Domains
Protein Structure
Proteins
Purine nucleotides
Structure
Structure-function relationships
Synthesis
Zebrafish
title Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structures%20of%20human%20GMPPA%E2%80%93GMPPB%20complex%20reveal%20how%20cells%20maintain%20GDP-mannose%20homeostasis&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Zheng,%20Lvqin&rft.date=2021-05-01&rft.volume=28&rft.issue=5&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-021-00591-9&rft_dat=%3Cgale_proqu%3EA661715711%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526475942&rft_id=info:pmid/33986552&rft_galeid=A661715711&rfr_iscdi=true