Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis
GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM stru...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2021-05, Vol.28 (5), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Nature structural & molecular biology |
container_volume | 28 |
creator | Zheng, Lvqin Liu, Zhe Wang, Yan Yang, Fan Wang, Jinrui Huang, Wenjie Qin, Jiao Tian, Min Cai, Xiaotang Liu, Xiaohui Mo, Xianming Gao, Ning Jia, Da |
description | GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB.
Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity. |
doi_str_mv | 10.1038/s41594-021-00591-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528180949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661715711</galeid><sourcerecordid>A661715711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</originalsourceid><addsrcrecordid>eNp9kttu1DAQhiMEoqXwAlwgS9zARVrb8fFyWcq2UitWHK4tx2tvUyXx4kmgveMdeEOepA7bgxYhZFljeb5_NL89RfGS4EOCK3UEjHDNSkxJiTHXpNSPin3CGS-1Vvzx_VlXe8UzgEuMKeeyelrsVZVWgnO6X7h5uo7l8TmCIY1uGJMHFAO6GDvbo8X5cjn7_fPXFN8hF7tN669Q8t-9bdFF_IGcb1tAnW36IW-0eL8ss66P4HO68xEGCw08L54E24J_cRsPiq8fjr_MT8qzj4vT-eysdJzRoXRV0K7SMvBaWmKZJc6LGjNHmRBU1WGlMKudEnUQihNnlZIhECmCkLLKxg6KN9u6mxS_jR4G0zUwtWh7H0cwlFNFFNZMZ_T1X-hlHFOfu5sowWR-WPpArW3rTdOHOCTrpqJmJgSRhEtCMnX4Dyqvle8aF3sfmny_I3i7I8jM4K-GtR0BzOnnT7ss3bIuRYDkg9mkprPp2hBspikw2ykweQrMnykwk7tXt-7GuvOre8ndt2eg2gKQU_3apwf7_yl7A9jculQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526475942</pqid></control><display><type>article</type><title>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</title><source>MEDLINE</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Lvqin ; Liu, Zhe ; Wang, Yan ; Yang, Fan ; Wang, Jinrui ; Huang, Wenjie ; Qin, Jiao ; Tian, Min ; Cai, Xiaotang ; Liu, Xiaohui ; Mo, Xianming ; Gao, Ning ; Jia, Da</creator><creatorcontrib>Zheng, Lvqin ; Liu, Zhe ; Wang, Yan ; Yang, Fan ; Wang, Jinrui ; Huang, Wenjie ; Qin, Jiao ; Tian, Min ; Cai, Xiaotang ; Liu, Xiaohui ; Mo, Xianming ; Gao, Ning ; Jia, Da</creatorcontrib><description>GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB.
Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-021-00591-9</identifier><identifier>PMID: 33986552</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/28 ; 13/1 ; 631/45/221 ; 631/535/1258/1259 ; 64/116 ; 692/699 ; 82/16 ; 82/58 ; Animals ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Carbohydrate metabolism ; Catalytic activity ; Cell research ; Cellular control mechanisms ; Cellular structure ; Cryoelectron Microscopy ; Functional analysis ; GDP-mannose ; Glycosylation ; Guanosine diphosphate ; Guanosine Diphosphate Mannose - metabolism ; HEK293 Cells ; Homeostasis ; Humans ; Life Sciences ; Mannose ; Membrane Biology ; Metabolites ; Muscles ; Mutation ; Nucleotidyltransferases - chemistry ; Nucleotidyltransferases - metabolism ; Phenotypes ; Physiological aspects ; Protein Binding ; Protein Domains ; Protein Structure ; Proteins ; Purine nucleotides ; Structure ; Structure-function relationships ; Synthesis ; Zebrafish</subject><ispartof>Nature structural & molecular biology, 2021-05, Vol.28 (5), p.1-12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</citedby><cites>FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</cites><orcidid>0000-0002-2205-1998 ; 0000-0003-3067-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-021-00591-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-021-00591-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33986552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Lvqin</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Qin, Jiao</creatorcontrib><creatorcontrib>Tian, Min</creatorcontrib><creatorcontrib>Cai, Xiaotang</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Mo, Xianming</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Jia, Da</creatorcontrib><title>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB.
Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity.</description><subject>101/28</subject><subject>13/1</subject><subject>631/45/221</subject><subject>631/535/1258/1259</subject><subject>64/116</subject><subject>692/699</subject><subject>82/16</subject><subject>82/58</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrate metabolism</subject><subject>Catalytic activity</subject><subject>Cell research</subject><subject>Cellular control mechanisms</subject><subject>Cellular structure</subject><subject>Cryoelectron Microscopy</subject><subject>Functional analysis</subject><subject>GDP-mannose</subject><subject>Glycosylation</subject><subject>Guanosine diphosphate</subject><subject>Guanosine Diphosphate Mannose - metabolism</subject><subject>HEK293 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mannose</subject><subject>Membrane Biology</subject><subject>Metabolites</subject><subject>Muscles</subject><subject>Mutation</subject><subject>Nucleotidyltransferases - chemistry</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Purine nucleotides</subject><subject>Structure</subject><subject>Structure-function relationships</subject><subject>Synthesis</subject><subject>Zebrafish</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kttu1DAQhiMEoqXwAlwgS9zARVrb8fFyWcq2UitWHK4tx2tvUyXx4kmgveMdeEOepA7bgxYhZFljeb5_NL89RfGS4EOCK3UEjHDNSkxJiTHXpNSPin3CGS-1Vvzx_VlXe8UzgEuMKeeyelrsVZVWgnO6X7h5uo7l8TmCIY1uGJMHFAO6GDvbo8X5cjn7_fPXFN8hF7tN669Q8t-9bdFF_IGcb1tAnW36IW-0eL8ss66P4HO68xEGCw08L54E24J_cRsPiq8fjr_MT8qzj4vT-eysdJzRoXRV0K7SMvBaWmKZJc6LGjNHmRBU1WGlMKudEnUQihNnlZIhECmCkLLKxg6KN9u6mxS_jR4G0zUwtWh7H0cwlFNFFNZMZ_T1X-hlHFOfu5sowWR-WPpArW3rTdOHOCTrpqJmJgSRhEtCMnX4Dyqvle8aF3sfmny_I3i7I8jM4K-GtR0BzOnnT7ss3bIuRYDkg9mkprPp2hBspikw2ykweQrMnykwk7tXt-7GuvOre8ndt2eg2gKQU_3apwf7_yl7A9jculQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zheng, Lvqin</creator><creator>Liu, Zhe</creator><creator>Wang, Yan</creator><creator>Yang, Fan</creator><creator>Wang, Jinrui</creator><creator>Huang, Wenjie</creator><creator>Qin, Jiao</creator><creator>Tian, Min</creator><creator>Cai, Xiaotang</creator><creator>Liu, Xiaohui</creator><creator>Mo, Xianming</creator><creator>Gao, Ning</creator><creator>Jia, Da</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2205-1998</orcidid><orcidid>https://orcid.org/0000-0003-3067-9993</orcidid></search><sort><creationdate>20210501</creationdate><title>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</title><author>Zheng, Lvqin ; Liu, Zhe ; Wang, Yan ; Yang, Fan ; Wang, Jinrui ; Huang, Wenjie ; Qin, Jiao ; Tian, Min ; Cai, Xiaotang ; Liu, Xiaohui ; Mo, Xianming ; Gao, Ning ; Jia, Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-c3f9c397f5b7a1a4a1ce6b04c246628bfd804bc86bf6851ca887ff176f6773573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>13/1</topic><topic>631/45/221</topic><topic>631/535/1258/1259</topic><topic>64/116</topic><topic>692/699</topic><topic>82/16</topic><topic>82/58</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrate metabolism</topic><topic>Catalytic activity</topic><topic>Cell research</topic><topic>Cellular control mechanisms</topic><topic>Cellular structure</topic><topic>Cryoelectron Microscopy</topic><topic>Functional analysis</topic><topic>GDP-mannose</topic><topic>Glycosylation</topic><topic>Guanosine diphosphate</topic><topic>Guanosine Diphosphate Mannose - metabolism</topic><topic>HEK293 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mannose</topic><topic>Membrane Biology</topic><topic>Metabolites</topic><topic>Muscles</topic><topic>Mutation</topic><topic>Nucleotidyltransferases - chemistry</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Purine nucleotides</topic><topic>Structure</topic><topic>Structure-function relationships</topic><topic>Synthesis</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lvqin</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Huang, Wenjie</creatorcontrib><creatorcontrib>Qin, Jiao</creatorcontrib><creatorcontrib>Tian, Min</creatorcontrib><creatorcontrib>Cai, Xiaotang</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Mo, Xianming</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Jia, Da</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Lvqin</au><au>Liu, Zhe</au><au>Wang, Yan</au><au>Yang, Fan</au><au>Wang, Jinrui</au><au>Huang, Wenjie</au><au>Qin, Jiao</au><au>Tian, Min</au><au>Cai, Xiaotang</au><au>Liu, Xiaohui</au><au>Mo, Xianming</au><au>Gao, Ning</au><au>Jia, Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>5</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>GDP-mannose (GDP-Man) is a key metabolite essential for protein glycosylation and glycophosphatidylinositol anchor synthesis, and aberrant cellular GDP-Man levels have been associated with multiple human diseases. How cells maintain homeostasis of GDP-Man is unknown. Here, we report the cryo-EM structures of human GMPPA–GMPPB complex, the protein machinery responsible for GDP-Man synthesis, in complex with GDP-Man or GTP. Unexpectedly, we find that the catalytically inactive subunit GMPPA displays a much higher affinity to GDP-Man than the active subunit GMPPB and, subsequently, inhibits the catalytic activity of GMPPB through a unique C-terminal loop of GMPPA. Importantly, disruption of the interactions between GMPPA and GMPPB or the binding of GDP-Man to GMPPA in zebrafish leads to abnormal brain development and muscle abnormality, analogous to phenotypes observed in individuals carrying GMPPA or GMPPB mutations. We conclude that GMPPA acts as a cellular sensor to maintain mannose homeostasis through allosterically regulating GMPPB.
Structural elucidation and functional analysis of the human GMPPA–GMPPB complex reveals how GMPPA acts as a ‘sensor’ of GDP-mannose to allosterically regulate GMPPB activity.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33986552</pmid><doi>10.1038/s41594-021-00591-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2205-1998</orcidid><orcidid>https://orcid.org/0000-0003-3067-9993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2021-05, Vol.28 (5), p.1-12 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_2528180949 |
source | MEDLINE; Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings |
subjects | 101/28 13/1 631/45/221 631/535/1258/1259 64/116 692/699 82/16 82/58 Animals Biochemistry Biological Microscopy Biomedical and Life Sciences Carbohydrate metabolism Catalytic activity Cell research Cellular control mechanisms Cellular structure Cryoelectron Microscopy Functional analysis GDP-mannose Glycosylation Guanosine diphosphate Guanosine Diphosphate Mannose - metabolism HEK293 Cells Homeostasis Humans Life Sciences Mannose Membrane Biology Metabolites Muscles Mutation Nucleotidyltransferases - chemistry Nucleotidyltransferases - metabolism Phenotypes Physiological aspects Protein Binding Protein Domains Protein Structure Proteins Purine nucleotides Structure Structure-function relationships Synthesis Zebrafish |
title | Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20structures%20of%20human%20GMPPA%E2%80%93GMPPB%20complex%20reveal%20how%20cells%20maintain%20GDP-mannose%20homeostasis&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Zheng,%20Lvqin&rft.date=2021-05-01&rft.volume=28&rft.issue=5&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-021-00591-9&rft_dat=%3Cgale_proqu%3EA661715711%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526475942&rft_id=info:pmid/33986552&rft_galeid=A661715711&rfr_iscdi=true |