Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries

Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-05, Vol.13 (20), p.24070-24080
Hauptverfasser: Kim, Suji, Kim, You Jin, Ryu, Won-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24080
container_issue 20
container_start_page 24070
container_title ACS applied materials & interfaces
container_volume 13
creator Kim, Suji
Kim, You Jin
Ryu, Won-Hee
description Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.
doi_str_mv 10.1021/acsami.1c05928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528175547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528175547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</originalsourceid><addsrcrecordid>eNp1kMFP2zAUhy00BIVx5Tj5OE1KsR0ndo5d1UGlIhDbzpFjvwxXiZ3ZCQLxz2No4cbpWU_f79PzD6FzSuaUMHqhdFS9nVNNiorJAzSjFeeZZAX78vHm_BidxLglpMwZKY7QcZ5XUlYlm6HnpXdj8F2nmg7w2kUIo_UOX4O-V87GHvsWrx4H5QwYfBnUcG9HwAvnDUS86ofOP1n3DyfNA4T4Gr0Dpd8ctzZpQ8StD_i3N3bqs3Va_1TjCMFC_IoOW9VFONvPU_T31-rP8irb3Fyul4tNpvKqHDOmBTQNE6UoSyEYb6GsZMMJFUbynJbKmEq2rZK6IFxrArksCik0T3eYtuL5Kfq-8w7B_58gjnVvo4Z0nAM_xTqVJakoCi4SOt-hOvgYA7T1EGyvwlNNSf1aeL0rvN4XngLf9u6p6cF84O8NJ-DHDkjBeuun4NJXP7O9AA76jR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528175547</pqid></control><display><type>article</type><title>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</title><source>American Chemical Society (ACS) Journals</source><creator>Kim, Suji ; Kim, You Jin ; Ryu, Won-Hee</creator><creatorcontrib>Kim, Suji ; Kim, You Jin ; Ryu, Won-Hee</creatorcontrib><description>Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c05928</identifier><identifier>PMID: 33988962</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2021-05, Vol.13 (20), p.24070-24080</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</citedby><cites>FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</cites><orcidid>0000-0002-4614-489X ; 0000-0002-0203-2992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c05928$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c05928$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33988962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Suji</creatorcontrib><creatorcontrib>Kim, You Jin</creatorcontrib><creatorcontrib>Ryu, Won-Hee</creatorcontrib><title>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFP2zAUhy00BIVx5Tj5OE1KsR0ndo5d1UGlIhDbzpFjvwxXiZ3ZCQLxz2No4cbpWU_f79PzD6FzSuaUMHqhdFS9nVNNiorJAzSjFeeZZAX78vHm_BidxLglpMwZKY7QcZ5XUlYlm6HnpXdj8F2nmg7w2kUIo_UOX4O-V87GHvsWrx4H5QwYfBnUcG9HwAvnDUS86ofOP1n3DyfNA4T4Gr0Dpd8ctzZpQ8StD_i3N3bqs3Va_1TjCMFC_IoOW9VFONvPU_T31-rP8irb3Fyul4tNpvKqHDOmBTQNE6UoSyEYb6GsZMMJFUbynJbKmEq2rZK6IFxrArksCik0T3eYtuL5Kfq-8w7B_58gjnVvo4Z0nAM_xTqVJakoCi4SOt-hOvgYA7T1EGyvwlNNSf1aeL0rvN4XngLf9u6p6cF84O8NJ-DHDkjBeuun4NJXP7O9AA76jR0</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Kim, Suji</creator><creator>Kim, You Jin</creator><creator>Ryu, Won-Hee</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4614-489X</orcidid><orcidid>https://orcid.org/0000-0002-0203-2992</orcidid></search><sort><creationdate>20210526</creationdate><title>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</title><author>Kim, Suji ; Kim, You Jin ; Ryu, Won-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Suji</creatorcontrib><creatorcontrib>Kim, You Jin</creatorcontrib><creatorcontrib>Ryu, Won-Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Suji</au><au>Kim, You Jin</au><au>Ryu, Won-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-05-26</date><risdate>2021</risdate><volume>13</volume><issue>20</issue><spage>24070</spage><epage>24080</epage><pages>24070-24080</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33988962</pmid><doi>10.1021/acsami.1c05928</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4614-489X</orcidid><orcidid>https://orcid.org/0000-0002-0203-2992</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-05, Vol.13 (20), p.24070-24080
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2528175547
source American Chemical Society (ACS) Journals
subjects Functional Nanostructured Materials (including low-D carbon)
title Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Insertion%20Mechanism%20of%20Expanded%20Graphite%20Anodes%20Employing%20Conversion%20Reaction%20Pillars%20for%20Sodium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kim,%20Suji&rft.date=2021-05-26&rft.volume=13&rft.issue=20&rft.spage=24070&rft.epage=24080&rft.pages=24070-24080&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c05928&rft_dat=%3Cproquest_cross%3E2528175547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528175547&rft_id=info:pmid/33988962&rfr_iscdi=true