Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries
Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-05, Vol.13 (20), p.24070-24080 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24080 |
---|---|
container_issue | 20 |
container_start_page | 24070 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Kim, Suji Kim, You Jin Ryu, Won-Hee |
description | Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries. |
doi_str_mv | 10.1021/acsami.1c05928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528175547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528175547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</originalsourceid><addsrcrecordid>eNp1kMFP2zAUhy00BIVx5Tj5OE1KsR0ndo5d1UGlIhDbzpFjvwxXiZ3ZCQLxz2No4cbpWU_f79PzD6FzSuaUMHqhdFS9nVNNiorJAzSjFeeZZAX78vHm_BidxLglpMwZKY7QcZ5XUlYlm6HnpXdj8F2nmg7w2kUIo_UOX4O-V87GHvsWrx4H5QwYfBnUcG9HwAvnDUS86ofOP1n3DyfNA4T4Gr0Dpd8ctzZpQ8StD_i3N3bqs3Va_1TjCMFC_IoOW9VFONvPU_T31-rP8irb3Fyul4tNpvKqHDOmBTQNE6UoSyEYb6GsZMMJFUbynJbKmEq2rZK6IFxrArksCik0T3eYtuL5Kfq-8w7B_58gjnVvo4Z0nAM_xTqVJakoCi4SOt-hOvgYA7T1EGyvwlNNSf1aeL0rvN4XngLf9u6p6cF84O8NJ-DHDkjBeuun4NJXP7O9AA76jR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528175547</pqid></control><display><type>article</type><title>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</title><source>American Chemical Society (ACS) Journals</source><creator>Kim, Suji ; Kim, You Jin ; Ryu, Won-Hee</creator><creatorcontrib>Kim, Suji ; Kim, You Jin ; Ryu, Won-Hee</creatorcontrib><description>Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c05928</identifier><identifier>PMID: 33988962</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials & interfaces, 2021-05, Vol.13 (20), p.24070-24080</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</citedby><cites>FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</cites><orcidid>0000-0002-4614-489X ; 0000-0002-0203-2992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c05928$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c05928$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33988962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Suji</creatorcontrib><creatorcontrib>Kim, You Jin</creatorcontrib><creatorcontrib>Ryu, Won-Hee</creatorcontrib><title>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFP2zAUhy00BIVx5Tj5OE1KsR0ndo5d1UGlIhDbzpFjvwxXiZ3ZCQLxz2No4cbpWU_f79PzD6FzSuaUMHqhdFS9nVNNiorJAzSjFeeZZAX78vHm_BidxLglpMwZKY7QcZ5XUlYlm6HnpXdj8F2nmg7w2kUIo_UOX4O-V87GHvsWrx4H5QwYfBnUcG9HwAvnDUS86ofOP1n3DyfNA4T4Gr0Dpd8ctzZpQ8StD_i3N3bqs3Va_1TjCMFC_IoOW9VFONvPU_T31-rP8irb3Fyul4tNpvKqHDOmBTQNE6UoSyEYb6GsZMMJFUbynJbKmEq2rZK6IFxrArksCik0T3eYtuL5Kfq-8w7B_58gjnVvo4Z0nAM_xTqVJakoCi4SOt-hOvgYA7T1EGyvwlNNSf1aeL0rvN4XngLf9u6p6cF84O8NJ-DHDkjBeuun4NJXP7O9AA76jR0</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Kim, Suji</creator><creator>Kim, You Jin</creator><creator>Ryu, Won-Hee</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4614-489X</orcidid><orcidid>https://orcid.org/0000-0002-0203-2992</orcidid></search><sort><creationdate>20210526</creationdate><title>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</title><author>Kim, Suji ; Kim, You Jin ; Ryu, Won-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-2c7ebb2767667724fe698b4017d84316add98ffa8c504cc0e385587c4eacdf943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Suji</creatorcontrib><creatorcontrib>Kim, You Jin</creatorcontrib><creatorcontrib>Ryu, Won-Hee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Suji</au><au>Kim, You Jin</au><au>Ryu, Won-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-05-26</date><risdate>2021</risdate><volume>13</volume><issue>20</issue><spage>24070</spage><epage>24080</epage><pages>24070-24080</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS x conversion reaction pillars (EG-MoS x ) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS x under different thermal treatment conditions. EG-MoS x -900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g–1. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS x (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS x anode materials by ex situ characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33988962</pmid><doi>10.1021/acsami.1c05928</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4614-489X</orcidid><orcidid>https://orcid.org/0000-0002-0203-2992</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-05, Vol.13 (20), p.24070-24080 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2528175547 |
source | American Chemical Society (ACS) Journals |
subjects | Functional Nanostructured Materials (including low-D carbon) |
title | Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Insertion%20Mechanism%20of%20Expanded%20Graphite%20Anodes%20Employing%20Conversion%20Reaction%20Pillars%20for%20Sodium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kim,%20Suji&rft.date=2021-05-26&rft.volume=13&rft.issue=20&rft.spage=24070&rft.epage=24080&rft.pages=24070-24080&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c05928&rft_dat=%3Cproquest_cross%3E2528175547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528175547&rft_id=info:pmid/33988962&rfr_iscdi=true |