Al-Si substitution in α-phase AlMnSi

The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 1989-06, Vol.24 (6), p.2177-2182
Hauptverfasser: TIBBALLS, J. E, DAVIS, R. L, PARKER, B. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2182
container_issue 6
container_start_page 2177
container_title Journal of materials science
container_volume 24
creator TIBBALLS, J. E
DAVIS, R. L
PARKER, B. A
description The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon.
doi_str_mv 10.1007/BF02385438
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_25265322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25265322</sourcerecordid><originalsourceid>FETCH-LOGICAL-p176t-1406b9b6a2dafc2883010aff6971f2522507b3c46dd789f9b29ec47bbc9c43e13</originalsourceid><addsrcrecordid>eNqNzj1OwzAYxnELgUQoLJwgA7AZXr_-SsZQUUAqYijMke3YwihNQpwMHIuLcCaK6AGYnuWnvx5CzhlcMwB9c7sC5IUUvDggGZOaU1EAPyQZACJFodgxOUnpHQCkRpaRy6qlm5in2aYpTvMU-y6PXf79RYc3k3xetU_dJp6So2Da5M_2uyCvq7uX5QNdP98_Lqs1HZhWE2UClC2tMtiY4LAoODAwIahSs4ASUYK23AnVNLooQ2mx9E5oa13pBPeML8jVX3cY-4_Zp6nexuR825rO93Oqdw0lOeK_IGr5Cy_20CRn2jCazsVUD2PcmvGz1nx3SQD_ASeHWzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25262752</pqid></control><display><type>article</type><title>Al-Si substitution in α-phase AlMnSi</title><source>SpringerLink Journals - AutoHoldings</source><creator>TIBBALLS, J. E ; DAVIS, R. L ; PARKER, B. A</creator><creatorcontrib>TIBBALLS, J. E ; DAVIS, R. L ; PARKER, B. A</creatorcontrib><description>The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/BF02385438</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Metals, semimetals and alloys ; Methods of crystal growth; physics of crystal growth ; Physics ; Specific materials ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of materials science, 1989-06, Vol.24 (6), p.2177-2182</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7350740$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TIBBALLS, J. E</creatorcontrib><creatorcontrib>DAVIS, R. L</creatorcontrib><creatorcontrib>PARKER, B. A</creatorcontrib><title>Al-Si substitution in α-phase AlMnSi</title><title>Journal of materials science</title><description>The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals, semimetals and alloys</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqNzj1OwzAYxnELgUQoLJwgA7AZXr_-SsZQUUAqYijMke3YwihNQpwMHIuLcCaK6AGYnuWnvx5CzhlcMwB9c7sC5IUUvDggGZOaU1EAPyQZACJFodgxOUnpHQCkRpaRy6qlm5in2aYpTvMU-y6PXf79RYc3k3xetU_dJp6So2Da5M_2uyCvq7uX5QNdP98_Lqs1HZhWE2UClC2tMtiY4LAoODAwIahSs4ASUYK23AnVNLooQ2mx9E5oa13pBPeML8jVX3cY-4_Zp6nexuR825rO93Oqdw0lOeK_IGr5Cy_20CRn2jCazsVUD2PcmvGz1nx3SQD_ASeHWzg</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>TIBBALLS, J. E</creator><creator>DAVIS, R. L</creator><creator>PARKER, B. A</creator><general>Springer</general><scope>IQODW</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>19890601</creationdate><title>Al-Si substitution in α-phase AlMnSi</title><author>TIBBALLS, J. E ; DAVIS, R. L ; PARKER, B. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p176t-1406b9b6a2dafc2883010aff6971f2522507b3c46dd789f9b29ec47bbc9c43e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals, semimetals and alloys</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TIBBALLS, J. E</creatorcontrib><creatorcontrib>DAVIS, R. L</creatorcontrib><creatorcontrib>PARKER, B. A</creatorcontrib><collection>Pascal-Francis</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TIBBALLS, J. E</au><au>DAVIS, R. L</au><au>PARKER, B. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Al-Si substitution in α-phase AlMnSi</atitle><jtitle>Journal of materials science</jtitle><date>1989-06-01</date><risdate>1989</risdate><volume>24</volume><issue>6</issue><spage>2177</spage><epage>2182</epage><pages>2177-2182</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02385438</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 1989-06, Vol.24 (6), p.2177-2182
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_25265322
source SpringerLink Journals - AutoHoldings
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Metals, semimetals and alloys
Methods of crystal growth
physics of crystal growth
Physics
Specific materials
Structure of solids and liquids
crystallography
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Al-Si substitution in α-phase AlMnSi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Al-Si%20substitution%20in%20%CE%B1-phase%20AlMnSi&rft.jtitle=Journal%20of%20materials%20science&rft.au=TIBBALLS,%20J.%20E&rft.date=1989-06-01&rft.volume=24&rft.issue=6&rft.spage=2177&rft.epage=2182&rft.pages=2177-2182&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/BF02385438&rft_dat=%3Cproquest_pasca%3E25265322%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25262752&rft_id=info:pmid/&rfr_iscdi=true