Al-Si substitution in α-phase AlMnSi
The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enab...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 1989-06, Vol.24 (6), p.2177-2182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2182 |
---|---|
container_issue | 6 |
container_start_page | 2177 |
container_title | Journal of materials science |
container_volume | 24 |
creator | TIBBALLS, J. E DAVIS, R. L PARKER, B. A |
description | The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon. |
doi_str_mv | 10.1007/BF02385438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_25265322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25265322</sourcerecordid><originalsourceid>FETCH-LOGICAL-p176t-1406b9b6a2dafc2883010aff6971f2522507b3c46dd789f9b29ec47bbc9c43e13</originalsourceid><addsrcrecordid>eNqNzj1OwzAYxnELgUQoLJwgA7AZXr_-SsZQUUAqYijMke3YwihNQpwMHIuLcCaK6AGYnuWnvx5CzhlcMwB9c7sC5IUUvDggGZOaU1EAPyQZACJFodgxOUnpHQCkRpaRy6qlm5in2aYpTvMU-y6PXf79RYc3k3xetU_dJp6So2Da5M_2uyCvq7uX5QNdP98_Lqs1HZhWE2UClC2tMtiY4LAoODAwIahSs4ASUYK23AnVNLooQ2mx9E5oa13pBPeML8jVX3cY-4_Zp6nexuR825rO93Oqdw0lOeK_IGr5Cy_20CRn2jCazsVUD2PcmvGz1nx3SQD_ASeHWzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25262752</pqid></control><display><type>article</type><title>Al-Si substitution in α-phase AlMnSi</title><source>SpringerLink Journals - AutoHoldings</source><creator>TIBBALLS, J. E ; DAVIS, R. L ; PARKER, B. A</creator><creatorcontrib>TIBBALLS, J. E ; DAVIS, R. L ; PARKER, B. A</creatorcontrib><description>The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/BF02385438</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Metals, semimetals and alloys ; Methods of crystal growth; physics of crystal growth ; Physics ; Specific materials ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Journal of materials science, 1989-06, Vol.24 (6), p.2177-2182</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7350740$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TIBBALLS, J. E</creatorcontrib><creatorcontrib>DAVIS, R. L</creatorcontrib><creatorcontrib>PARKER, B. A</creatorcontrib><title>Al-Si substitution in α-phase AlMnSi</title><title>Journal of materials science</title><description>The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metals, semimetals and alloys</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqNzj1OwzAYxnELgUQoLJwgA7AZXr_-SsZQUUAqYijMke3YwihNQpwMHIuLcCaK6AGYnuWnvx5CzhlcMwB9c7sC5IUUvDggGZOaU1EAPyQZACJFodgxOUnpHQCkRpaRy6qlm5in2aYpTvMU-y6PXf79RYc3k3xetU_dJp6So2Da5M_2uyCvq7uX5QNdP98_Lqs1HZhWE2UClC2tMtiY4LAoODAwIahSs4ASUYK23AnVNLooQ2mx9E5oa13pBPeML8jVX3cY-4_Zp6nexuR825rO93Oqdw0lOeK_IGr5Cy_20CRn2jCazsVUD2PcmvGz1nx3SQD_ASeHWzg</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>TIBBALLS, J. E</creator><creator>DAVIS, R. L</creator><creator>PARKER, B. A</creator><general>Springer</general><scope>IQODW</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>19890601</creationdate><title>Al-Si substitution in α-phase AlMnSi</title><author>TIBBALLS, J. E ; DAVIS, R. L ; PARKER, B. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p176t-1406b9b6a2dafc2883010aff6971f2522507b3c46dd789f9b29ec47bbc9c43e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metals, semimetals and alloys</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TIBBALLS, J. E</creatorcontrib><creatorcontrib>DAVIS, R. L</creatorcontrib><creatorcontrib>PARKER, B. A</creatorcontrib><collection>Pascal-Francis</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TIBBALLS, J. E</au><au>DAVIS, R. L</au><au>PARKER, B. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Al-Si substitution in α-phase AlMnSi</atitle><jtitle>Journal of materials science</jtitle><date>1989-06-01</date><risdate>1989</risdate><volume>24</volume><issue>6</issue><spage>2177</spage><epage>2182</epage><pages>2177-2182</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The alpha -phase of the Al-Mn-Si ternary system has been precipitated from four liquid solutions (2.8 wt% Mn-3.7 wt% Si, 4.5 wt% Mn-7 wt% Si, 7.7 wt% Mn-10 wt% Si and 8.7 wt% Mn-12.6 wt% Si) and equilibrated slightly over the melting point of the (secondary) solid solution. Quenching into water enabled the precipitates to be separated from the solid solution and the co-nodal tie-lines for the alpha -phase and liquid to be determined. The silicon content varied from 9.8 to 11.8 wt%, while the manganese content, 29.6 plus or minus 0.6 wt%, did not vary significantly. The lattice parameter of the cubic unit cell decreased from 1.267 6(2) nm to 1.265 10(4) nm with increasing silicon.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02385438</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 1989-06, Vol.24 (6), p.2177-2182 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_25265322 |
source | SpringerLink Journals - AutoHoldings |
subjects | Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Metals, semimetals and alloys Methods of crystal growth physics of crystal growth Physics Specific materials Structure of solids and liquids crystallography Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation |
title | Al-Si substitution in α-phase AlMnSi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Al-Si%20substitution%20in%20%CE%B1-phase%20AlMnSi&rft.jtitle=Journal%20of%20materials%20science&rft.au=TIBBALLS,%20J.%20E&rft.date=1989-06-01&rft.volume=24&rft.issue=6&rft.spage=2177&rft.epage=2182&rft.pages=2177-2182&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/BF02385438&rft_dat=%3Cproquest_pasca%3E25265322%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25262752&rft_id=info:pmid/&rfr_iscdi=true |