Underwater localization system based on visible-light communications using neural networks

Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2021-05, Vol.60 (13), p.3977-3988
Hauptverfasser: Ghonim, Alzahraa M, Salama, Wessam M, El-Fikky, Abd El-Rahman A, Khalaf, Ashraf A M, Shalaby, Hossam M H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3988
container_issue 13
container_start_page 3977
container_title Applied optics (2004)
container_volume 60
creator Ghonim, Alzahraa M
Salama, Wessam M
El-Fikky, Abd El-Rahman A
Khalaf, Ashraf A M
Shalaby, Hossam M H
description Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.
doi_str_mv 10.1364/AO.419494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2526307111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526307111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK0u_AMScKOL1Jm5SSazLMUXFLqxIG7CZHJTp-ahM4ml_nqntrpwde6Fj8PhI-Sc0TGDJLqZzMcRk5GMDsiQszgOgSXxIRn6U4aMp88DcuLcilKIIymOyQBApgAghuRl0RRo16pDG1StVpX5Up1pm8BtXId1kCuHReD_T-NMXmFYmeVrF-i2rvvG6B_WBb0zzTJosLeq8tGtW_vmTslRqSqHZ_sckcXd7dP0IZzN7x-nk1mogUEXipiBViCStEQsyiISqYSkjIXfilLQXOiypJRyyjHHtGA6iZALZCWPGICGEbna9b7b9qNH12W1cRqrSjXY9i7jMU-ACsaYRy__oau2t41ft6W8NSG59NT1jtK2dc5imb1bUyu7yRjNtsKzyTzbCffsxb6xz2ss_shfw_ANpFZ7cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523167929</pqid></control><display><type>article</type><title>Underwater localization system based on visible-light communications using neural networks</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Ghonim, Alzahraa M ; Salama, Wessam M ; El-Fikky, Abd El-Rahman A ; Khalaf, Ashraf A M ; Shalaby, Hossam M H</creator><creatorcontrib>Ghonim, Alzahraa M ; Salama, Wessam M ; El-Fikky, Abd El-Rahman A ; Khalaf, Ashraf A M ; Shalaby, Hossam M H</creatorcontrib><description>Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.419494</identifier><identifier>PMID: 33983337</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Communications systems ; Data collection ; Data mining ; Localization ; Neural networks ; Ray tracing ; Recall ; Seawater ; Signal strength ; Software ; Testing time ; Underwater communication</subject><ispartof>Applied optics (2004), 2021-05, Vol.60 (13), p.3977-3988</ispartof><rights>Copyright Optical Society of America May 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</citedby><cites>FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</cites><orcidid>0000-0001-5099-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3256,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33983337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghonim, Alzahraa M</creatorcontrib><creatorcontrib>Salama, Wessam M</creatorcontrib><creatorcontrib>El-Fikky, Abd El-Rahman A</creatorcontrib><creatorcontrib>Khalaf, Ashraf A M</creatorcontrib><creatorcontrib>Shalaby, Hossam M H</creatorcontrib><title>Underwater localization system based on visible-light communications using neural networks</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.</description><subject>Algorithms</subject><subject>Communications systems</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Ray tracing</subject><subject>Recall</subject><subject>Seawater</subject><subject>Signal strength</subject><subject>Software</subject><subject>Testing time</subject><subject>Underwater communication</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRbK0u_AMScKOL1Jm5SSazLMUXFLqxIG7CZHJTp-ahM4ml_nqntrpwde6Fj8PhI-Sc0TGDJLqZzMcRk5GMDsiQszgOgSXxIRn6U4aMp88DcuLcilKIIymOyQBApgAghuRl0RRo16pDG1StVpX5Up1pm8BtXId1kCuHReD_T-NMXmFYmeVrF-i2rvvG6B_WBb0zzTJosLeq8tGtW_vmTslRqSqHZ_sckcXd7dP0IZzN7x-nk1mogUEXipiBViCStEQsyiISqYSkjIXfilLQXOiypJRyyjHHtGA6iZALZCWPGICGEbna9b7b9qNH12W1cRqrSjXY9i7jMU-ACsaYRy__oau2t41ft6W8NSG59NT1jtK2dc5imb1bUyu7yRjNtsKzyTzbCffsxb6xz2ss_shfw_ANpFZ7cA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ghonim, Alzahraa M</creator><creator>Salama, Wessam M</creator><creator>El-Fikky, Abd El-Rahman A</creator><creator>Khalaf, Ashraf A M</creator><creator>Shalaby, Hossam M H</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5099-3598</orcidid></search><sort><creationdate>20210501</creationdate><title>Underwater localization system based on visible-light communications using neural networks</title><author>Ghonim, Alzahraa M ; Salama, Wessam M ; El-Fikky, Abd El-Rahman A ; Khalaf, Ashraf A M ; Shalaby, Hossam M H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Communications systems</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Ray tracing</topic><topic>Recall</topic><topic>Seawater</topic><topic>Signal strength</topic><topic>Software</topic><topic>Testing time</topic><topic>Underwater communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghonim, Alzahraa M</creatorcontrib><creatorcontrib>Salama, Wessam M</creatorcontrib><creatorcontrib>El-Fikky, Abd El-Rahman A</creatorcontrib><creatorcontrib>Khalaf, Ashraf A M</creatorcontrib><creatorcontrib>Shalaby, Hossam M H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghonim, Alzahraa M</au><au>Salama, Wessam M</au><au>El-Fikky, Abd El-Rahman A</au><au>Khalaf, Ashraf A M</au><au>Shalaby, Hossam M H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater localization system based on visible-light communications using neural networks</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>60</volume><issue>13</issue><spage>3977</spage><epage>3988</epage><pages>3977-3988</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33983337</pmid><doi>10.1364/AO.419494</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5099-3598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2021-05, Vol.60 (13), p.3977-3988
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2526307111
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Algorithms
Communications systems
Data collection
Data mining
Localization
Neural networks
Ray tracing
Recall
Seawater
Signal strength
Software
Testing time
Underwater communication
title Underwater localization system based on visible-light communications using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20localization%20system%20based%20on%20visible-light%20communications%20using%20neural%20networks&rft.jtitle=Applied%20optics%20(2004)&rft.au=Ghonim,%20Alzahraa%20M&rft.date=2021-05-01&rft.volume=60&rft.issue=13&rft.spage=3977&rft.epage=3988&rft.pages=3977-3988&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.419494&rft_dat=%3Cproquest_cross%3E2526307111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523167929&rft_id=info:pmid/33983337&rfr_iscdi=true