Underwater localization system based on visible-light communications using neural networks
Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tr...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2021-05, Vol.60 (13), p.3977-3988 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3988 |
---|---|
container_issue | 13 |
container_start_page | 3977 |
container_title | Applied optics (2004) |
container_volume | 60 |
creator | Ghonim, Alzahraa M Salama, Wessam M El-Fikky, Abd El-Rahman A Khalaf, Ashraf A M Shalaby, Hossam M H |
description | Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively. |
doi_str_mv | 10.1364/AO.419494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2526307111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526307111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK0u_AMScKOL1Jm5SSazLMUXFLqxIG7CZHJTp-ahM4ml_nqntrpwde6Fj8PhI-Sc0TGDJLqZzMcRk5GMDsiQszgOgSXxIRn6U4aMp88DcuLcilKIIymOyQBApgAghuRl0RRo16pDG1StVpX5Up1pm8BtXId1kCuHReD_T-NMXmFYmeVrF-i2rvvG6B_WBb0zzTJosLeq8tGtW_vmTslRqSqHZ_sckcXd7dP0IZzN7x-nk1mogUEXipiBViCStEQsyiISqYSkjIXfilLQXOiypJRyyjHHtGA6iZALZCWPGICGEbna9b7b9qNH12W1cRqrSjXY9i7jMU-ACsaYRy__oau2t41ft6W8NSG59NT1jtK2dc5imb1bUyu7yRjNtsKzyTzbCffsxb6xz2ss_shfw_ANpFZ7cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523167929</pqid></control><display><type>article</type><title>Underwater localization system based on visible-light communications using neural networks</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Ghonim, Alzahraa M ; Salama, Wessam M ; El-Fikky, Abd El-Rahman A ; Khalaf, Ashraf A M ; Shalaby, Hossam M H</creator><creatorcontrib>Ghonim, Alzahraa M ; Salama, Wessam M ; El-Fikky, Abd El-Rahman A ; Khalaf, Ashraf A M ; Shalaby, Hossam M H</creatorcontrib><description>Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.419494</identifier><identifier>PMID: 33983337</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Communications systems ; Data collection ; Data mining ; Localization ; Neural networks ; Ray tracing ; Recall ; Seawater ; Signal strength ; Software ; Testing time ; Underwater communication</subject><ispartof>Applied optics (2004), 2021-05, Vol.60 (13), p.3977-3988</ispartof><rights>Copyright Optical Society of America May 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</citedby><cites>FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</cites><orcidid>0000-0001-5099-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3256,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33983337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghonim, Alzahraa M</creatorcontrib><creatorcontrib>Salama, Wessam M</creatorcontrib><creatorcontrib>El-Fikky, Abd El-Rahman A</creatorcontrib><creatorcontrib>Khalaf, Ashraf A M</creatorcontrib><creatorcontrib>Shalaby, Hossam M H</creatorcontrib><title>Underwater localization system based on visible-light communications using neural networks</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.</description><subject>Algorithms</subject><subject>Communications systems</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Ray tracing</subject><subject>Recall</subject><subject>Seawater</subject><subject>Signal strength</subject><subject>Software</subject><subject>Testing time</subject><subject>Underwater communication</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRbK0u_AMScKOL1Jm5SSazLMUXFLqxIG7CZHJTp-ahM4ml_nqntrpwde6Fj8PhI-Sc0TGDJLqZzMcRk5GMDsiQszgOgSXxIRn6U4aMp88DcuLcilKIIymOyQBApgAghuRl0RRo16pDG1StVpX5Up1pm8BtXId1kCuHReD_T-NMXmFYmeVrF-i2rvvG6B_WBb0zzTJosLeq8tGtW_vmTslRqSqHZ_sckcXd7dP0IZzN7x-nk1mogUEXipiBViCStEQsyiISqYSkjIXfilLQXOiypJRyyjHHtGA6iZALZCWPGICGEbna9b7b9qNH12W1cRqrSjXY9i7jMU-ACsaYRy__oau2t41ft6W8NSG59NT1jtK2dc5imb1bUyu7yRjNtsKzyTzbCffsxb6xz2ss_shfw_ANpFZ7cA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ghonim, Alzahraa M</creator><creator>Salama, Wessam M</creator><creator>El-Fikky, Abd El-Rahman A</creator><creator>Khalaf, Ashraf A M</creator><creator>Shalaby, Hossam M H</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5099-3598</orcidid></search><sort><creationdate>20210501</creationdate><title>Underwater localization system based on visible-light communications using neural networks</title><author>Ghonim, Alzahraa M ; Salama, Wessam M ; El-Fikky, Abd El-Rahman A ; Khalaf, Ashraf A M ; Shalaby, Hossam M H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-7513ca3768feedfd478936f57549e970b7cff000202ebe8d1c64e27e1f24133c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Communications systems</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Ray tracing</topic><topic>Recall</topic><topic>Seawater</topic><topic>Signal strength</topic><topic>Software</topic><topic>Testing time</topic><topic>Underwater communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghonim, Alzahraa M</creatorcontrib><creatorcontrib>Salama, Wessam M</creatorcontrib><creatorcontrib>El-Fikky, Abd El-Rahman A</creatorcontrib><creatorcontrib>Khalaf, Ashraf A M</creatorcontrib><creatorcontrib>Shalaby, Hossam M H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghonim, Alzahraa M</au><au>Salama, Wessam M</au><au>El-Fikky, Abd El-Rahman A</au><au>Khalaf, Ashraf A M</au><au>Shalaby, Hossam M H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater localization system based on visible-light communications using neural networks</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>60</volume><issue>13</issue><spage>3977</spage><epage>3988</epage><pages>3977-3988</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33983337</pmid><doi>10.1364/AO.419494</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5099-3598</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2021-05, Vol.60 (13), p.3977-3988 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2526307111 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Algorithms Communications systems Data collection Data mining Localization Neural networks Ray tracing Recall Seawater Signal strength Software Testing time Underwater communication |
title | Underwater localization system based on visible-light communications using neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20localization%20system%20based%20on%20visible-light%20communications%20using%20neural%20networks&rft.jtitle=Applied%20optics%20(2004)&rft.au=Ghonim,%20Alzahraa%20M&rft.date=2021-05-01&rft.volume=60&rft.issue=13&rft.spage=3977&rft.epage=3988&rft.pages=3977-3988&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.419494&rft_dat=%3Cproquest_cross%3E2526307111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523167929&rft_id=info:pmid/33983337&rfr_iscdi=true |