Degradation‐triggered release from biodegradable metallic surfaces
This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2021-12, Vol.109 (12), p.2184-2198 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2198 |
---|---|
container_issue | 12 |
container_start_page | 2184 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 109 |
creator | Md Yusop, Abdul Hakim Alsakkaf, Ahmed Noordin, Muhammad Azfar Idris, Hasbullah Nur, Hadi Szali Januddi, Fatihhi |
description | This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus.
c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus. |
doi_str_mv | 10.1002/jbm.b.34866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2526306656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578681964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</originalsourceid><addsrcrecordid>eNp90LtOxDAQBVALgXgsVPQoEg0SyuJHMnZK2OWpRTRQW3YyXmWVbMDeCNHxCXwjX4IhQEFBNVMc3RldQvYZHTNK-cnCtmM7FpkCWCPbLM95mhWKrf_uUmyRnRAWEQPNxSbZEqJQAhRsk-kU595UZlV3y_fXt5Wv53P0WCUeGzQBE-e7NrF1Vw3ONpi0uDJNU5dJ6L0zJYZdsuFME3Dve47Iw8X5_eQqnd1dXk9OZ2kpgEKK1BSMI2c2p7mtnGGGI4BiGZUZp8JJCQ7yqpTGIuVOqFJVHBkF5UBKKUbkaMh99N1Tj2Gl2zqU2DRmiV0fNM85CAqQQ6SHf-ii6_0yfheVVPFoAVlUx4MqfReCR6cffd0a_6IZ1Z_l6liutvqr3KgPvjN722L1a3_ajIAP4Llu8OW_LH1zdns2pH4AzqeEzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578681964</pqid></control><display><type>article</type><title>Degradation‐triggered release from biodegradable metallic surfaces</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Md Yusop, Abdul Hakim ; Alsakkaf, Ahmed ; Noordin, Muhammad Azfar ; Idris, Hasbullah ; Nur, Hadi ; Szali Januddi, Fatihhi</creator><creatorcontrib>Md Yusop, Abdul Hakim ; Alsakkaf, Ahmed ; Noordin, Muhammad Azfar ; Idris, Hasbullah ; Nur, Hadi ; Szali Januddi, Fatihhi</creatorcontrib><description>This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus.
c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34866</identifier><identifier>PMID: 33983686</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Alloys - chemistry ; Anodic dissolution ; Biocompatible Materials - chemistry ; Biodegradability ; biodegradable metals ; Biodegradation ; Biomedical materials ; controlled release ; Corrosion ; Curcumin ; Degradation ; degradation‐driven release ; Dissolution ; Electrical stimuli ; Electrochemistry ; Grooves ; Iron ; Materials research ; Materials science ; Materials Testing ; Morphology ; Zinc ; Zinc - chemistry ; Zinc coatings</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2021-12, Vol.109 (12), p.2184-2198</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</citedby><cites>FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</cites><orcidid>0000-0002-7905-1913 ; 0000-0002-4387-431X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34866$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34866$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33983686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Md Yusop, Abdul Hakim</creatorcontrib><creatorcontrib>Alsakkaf, Ahmed</creatorcontrib><creatorcontrib>Noordin, Muhammad Azfar</creatorcontrib><creatorcontrib>Idris, Hasbullah</creatorcontrib><creatorcontrib>Nur, Hadi</creatorcontrib><creatorcontrib>Szali Januddi, Fatihhi</creatorcontrib><title>Degradation‐triggered release from biodegradable metallic surfaces</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus.
c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus.</description><subject>Alloys - chemistry</subject><subject>Anodic dissolution</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradability</subject><subject>biodegradable metals</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>controlled release</subject><subject>Corrosion</subject><subject>Curcumin</subject><subject>Degradation</subject><subject>degradation‐driven release</subject><subject>Dissolution</subject><subject>Electrical stimuli</subject><subject>Electrochemistry</subject><subject>Grooves</subject><subject>Iron</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Morphology</subject><subject>Zinc</subject><subject>Zinc - chemistry</subject><subject>Zinc coatings</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90LtOxDAQBVALgXgsVPQoEg0SyuJHMnZK2OWpRTRQW3YyXmWVbMDeCNHxCXwjX4IhQEFBNVMc3RldQvYZHTNK-cnCtmM7FpkCWCPbLM95mhWKrf_uUmyRnRAWEQPNxSbZEqJQAhRsk-kU595UZlV3y_fXt5Wv53P0WCUeGzQBE-e7NrF1Vw3ONpi0uDJNU5dJ6L0zJYZdsuFME3Dve47Iw8X5_eQqnd1dXk9OZ2kpgEKK1BSMI2c2p7mtnGGGI4BiGZUZp8JJCQ7yqpTGIuVOqFJVHBkF5UBKKUbkaMh99N1Tj2Gl2zqU2DRmiV0fNM85CAqQQ6SHf-ii6_0yfheVVPFoAVlUx4MqfReCR6cffd0a_6IZ1Z_l6liutvqr3KgPvjN722L1a3_ajIAP4Llu8OW_LH1zdns2pH4AzqeEzg</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Md Yusop, Abdul Hakim</creator><creator>Alsakkaf, Ahmed</creator><creator>Noordin, Muhammad Azfar</creator><creator>Idris, Hasbullah</creator><creator>Nur, Hadi</creator><creator>Szali Januddi, Fatihhi</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7905-1913</orcidid><orcidid>https://orcid.org/0000-0002-4387-431X</orcidid></search><sort><creationdate>202112</creationdate><title>Degradation‐triggered release from biodegradable metallic surfaces</title><author>Md Yusop, Abdul Hakim ; Alsakkaf, Ahmed ; Noordin, Muhammad Azfar ; Idris, Hasbullah ; Nur, Hadi ; Szali Januddi, Fatihhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys - chemistry</topic><topic>Anodic dissolution</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradability</topic><topic>biodegradable metals</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>controlled release</topic><topic>Corrosion</topic><topic>Curcumin</topic><topic>Degradation</topic><topic>degradation‐driven release</topic><topic>Dissolution</topic><topic>Electrical stimuli</topic><topic>Electrochemistry</topic><topic>Grooves</topic><topic>Iron</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Morphology</topic><topic>Zinc</topic><topic>Zinc - chemistry</topic><topic>Zinc coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Md Yusop, Abdul Hakim</creatorcontrib><creatorcontrib>Alsakkaf, Ahmed</creatorcontrib><creatorcontrib>Noordin, Muhammad Azfar</creatorcontrib><creatorcontrib>Idris, Hasbullah</creatorcontrib><creatorcontrib>Nur, Hadi</creatorcontrib><creatorcontrib>Szali Januddi, Fatihhi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Md Yusop, Abdul Hakim</au><au>Alsakkaf, Ahmed</au><au>Noordin, Muhammad Azfar</au><au>Idris, Hasbullah</au><au>Nur, Hadi</au><au>Szali Januddi, Fatihhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation‐triggered release from biodegradable metallic surfaces</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2021-12</date><risdate>2021</risdate><volume>109</volume><issue>12</issue><spage>2184</spage><epage>2198</epage><pages>2184-2198</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus.
c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33983686</pmid><doi>10.1002/jbm.b.34866</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7905-1913</orcidid><orcidid>https://orcid.org/0000-0002-4387-431X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2021-12, Vol.109 (12), p.2184-2198 |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2526306656 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Alloys - chemistry Anodic dissolution Biocompatible Materials - chemistry Biodegradability biodegradable metals Biodegradation Biomedical materials controlled release Corrosion Curcumin Degradation degradation‐driven release Dissolution Electrical stimuli Electrochemistry Grooves Iron Materials research Materials science Materials Testing Morphology Zinc Zinc - chemistry Zinc coatings |
title | Degradation‐triggered release from biodegradable metallic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%E2%80%90triggered%20release%20from%20biodegradable%20metallic%20surfaces&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Md%20Yusop,%20Abdul%20Hakim&rft.date=2021-12&rft.volume=109&rft.issue=12&rft.spage=2184&rft.epage=2198&rft.pages=2184-2198&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34866&rft_dat=%3Cproquest_cross%3E2578681964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578681964&rft_id=info:pmid/33983686&rfr_iscdi=true |