Degradation‐triggered release from biodegradable metallic surfaces

This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2021-12, Vol.109 (12), p.2184-2198
Hauptverfasser: Md Yusop, Abdul Hakim, Alsakkaf, Ahmed, Noordin, Muhammad Azfar, Idris, Hasbullah, Nur, Hadi, Szali Januddi, Fatihhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2198
container_issue 12
container_start_page 2184
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 109
creator Md Yusop, Abdul Hakim
Alsakkaf, Ahmed
Noordin, Muhammad Azfar
Idris, Hasbullah
Nur, Hadi
Szali Januddi, Fatihhi
description This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus. c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus.
doi_str_mv 10.1002/jbm.b.34866
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2526306656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578681964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</originalsourceid><addsrcrecordid>eNp90LtOxDAQBVALgXgsVPQoEg0SyuJHMnZK2OWpRTRQW3YyXmWVbMDeCNHxCXwjX4IhQEFBNVMc3RldQvYZHTNK-cnCtmM7FpkCWCPbLM95mhWKrf_uUmyRnRAWEQPNxSbZEqJQAhRsk-kU595UZlV3y_fXt5Wv53P0WCUeGzQBE-e7NrF1Vw3ONpi0uDJNU5dJ6L0zJYZdsuFME3Dve47Iw8X5_eQqnd1dXk9OZ2kpgEKK1BSMI2c2p7mtnGGGI4BiGZUZp8JJCQ7yqpTGIuVOqFJVHBkF5UBKKUbkaMh99N1Tj2Gl2zqU2DRmiV0fNM85CAqQQ6SHf-ii6_0yfheVVPFoAVlUx4MqfReCR6cffd0a_6IZ1Z_l6liutvqr3KgPvjN722L1a3_ajIAP4Llu8OW_LH1zdns2pH4AzqeEzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578681964</pqid></control><display><type>article</type><title>Degradation‐triggered release from biodegradable metallic surfaces</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Md Yusop, Abdul Hakim ; Alsakkaf, Ahmed ; Noordin, Muhammad Azfar ; Idris, Hasbullah ; Nur, Hadi ; Szali Januddi, Fatihhi</creator><creatorcontrib>Md Yusop, Abdul Hakim ; Alsakkaf, Ahmed ; Noordin, Muhammad Azfar ; Idris, Hasbullah ; Nur, Hadi ; Szali Januddi, Fatihhi</creatorcontrib><description>This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus. c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34866</identifier><identifier>PMID: 33983686</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Alloys - chemistry ; Anodic dissolution ; Biocompatible Materials - chemistry ; Biodegradability ; biodegradable metals ; Biodegradation ; Biomedical materials ; controlled release ; Corrosion ; Curcumin ; Degradation ; degradation‐driven release ; Dissolution ; Electrical stimuli ; Electrochemistry ; Grooves ; Iron ; Materials research ; Materials science ; Materials Testing ; Morphology ; Zinc ; Zinc - chemistry ; Zinc coatings</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2021-12, Vol.109 (12), p.2184-2198</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</citedby><cites>FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</cites><orcidid>0000-0002-7905-1913 ; 0000-0002-4387-431X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34866$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34866$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33983686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Md Yusop, Abdul Hakim</creatorcontrib><creatorcontrib>Alsakkaf, Ahmed</creatorcontrib><creatorcontrib>Noordin, Muhammad Azfar</creatorcontrib><creatorcontrib>Idris, Hasbullah</creatorcontrib><creatorcontrib>Nur, Hadi</creatorcontrib><creatorcontrib>Szali Januddi, Fatihhi</creatorcontrib><title>Degradation‐triggered release from biodegradable metallic surfaces</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus. c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus.</description><subject>Alloys - chemistry</subject><subject>Anodic dissolution</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradability</subject><subject>biodegradable metals</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>controlled release</subject><subject>Corrosion</subject><subject>Curcumin</subject><subject>Degradation</subject><subject>degradation‐driven release</subject><subject>Dissolution</subject><subject>Electrical stimuli</subject><subject>Electrochemistry</subject><subject>Grooves</subject><subject>Iron</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Morphology</subject><subject>Zinc</subject><subject>Zinc - chemistry</subject><subject>Zinc coatings</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90LtOxDAQBVALgXgsVPQoEg0SyuJHMnZK2OWpRTRQW3YyXmWVbMDeCNHxCXwjX4IhQEFBNVMc3RldQvYZHTNK-cnCtmM7FpkCWCPbLM95mhWKrf_uUmyRnRAWEQPNxSbZEqJQAhRsk-kU595UZlV3y_fXt5Wv53P0WCUeGzQBE-e7NrF1Vw3ONpi0uDJNU5dJ6L0zJYZdsuFME3Dve47Iw8X5_eQqnd1dXk9OZ2kpgEKK1BSMI2c2p7mtnGGGI4BiGZUZp8JJCQ7yqpTGIuVOqFJVHBkF5UBKKUbkaMh99N1Tj2Gl2zqU2DRmiV0fNM85CAqQQ6SHf-ii6_0yfheVVPFoAVlUx4MqfReCR6cffd0a_6IZ1Z_l6liutvqr3KgPvjN722L1a3_ajIAP4Llu8OW_LH1zdns2pH4AzqeEzg</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Md Yusop, Abdul Hakim</creator><creator>Alsakkaf, Ahmed</creator><creator>Noordin, Muhammad Azfar</creator><creator>Idris, Hasbullah</creator><creator>Nur, Hadi</creator><creator>Szali Januddi, Fatihhi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7905-1913</orcidid><orcidid>https://orcid.org/0000-0002-4387-431X</orcidid></search><sort><creationdate>202112</creationdate><title>Degradation‐triggered release from biodegradable metallic surfaces</title><author>Md Yusop, Abdul Hakim ; Alsakkaf, Ahmed ; Noordin, Muhammad Azfar ; Idris, Hasbullah ; Nur, Hadi ; Szali Januddi, Fatihhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3606-e0a912e21b505bdfa1a2e66814074203f776f65dc7abe02f38c8d2e1068f67773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys - chemistry</topic><topic>Anodic dissolution</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradability</topic><topic>biodegradable metals</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>controlled release</topic><topic>Corrosion</topic><topic>Curcumin</topic><topic>Degradation</topic><topic>degradation‐driven release</topic><topic>Dissolution</topic><topic>Electrical stimuli</topic><topic>Electrochemistry</topic><topic>Grooves</topic><topic>Iron</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Morphology</topic><topic>Zinc</topic><topic>Zinc - chemistry</topic><topic>Zinc coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Md Yusop, Abdul Hakim</creatorcontrib><creatorcontrib>Alsakkaf, Ahmed</creatorcontrib><creatorcontrib>Noordin, Muhammad Azfar</creatorcontrib><creatorcontrib>Idris, Hasbullah</creatorcontrib><creatorcontrib>Nur, Hadi</creatorcontrib><creatorcontrib>Szali Januddi, Fatihhi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Md Yusop, Abdul Hakim</au><au>Alsakkaf, Ahmed</au><au>Noordin, Muhammad Azfar</au><au>Idris, Hasbullah</au><au>Nur, Hadi</au><au>Szali Januddi, Fatihhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation‐triggered release from biodegradable metallic surfaces</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2021-12</date><risdate>2021</risdate><volume>109</volume><issue>12</issue><spage>2184</spage><epage>2198</epage><pages>2184-2198</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>This work is dedicated to the investigation of drug‐release control by a direct effect of degradation from biodegradable metallic surfaces. Degradation behaviors characterized by surface morphology, immersion, and electrochemical techniques demonstrated that curcumin‐coated zinc (c‐Zn) had a higher degradation rate compared to curcumin‐coated Fe (c‐Fe). High anodic dissolution rate due to the higher degradation rate and widely extended groove‐like degradation structure of c‐Zn propelled a higher curcumin release. On the other hand, a slower curcumin release rate shown by c‐Fe scaffolds is ascribed to its lower anodic dissolution and to its pitting degradation regime with relatively smaller pits. These findings illuminate the remarkable advantage of different degradation behaviors of degradable metallic surfaces in directly controlling the drug release without the need for external electrical stimulus. c‐Zn exhibited a higher curcumin release in comparison to that of c‐Fe due to its accelerated degradation rate coupled with widely extended groove‐like degradation structure. There is a direct linear correlation between the curcumin release amount and the degradation rate over the corrosion period. These findings illuminate the remarkable advantage of different degradation behaviours of degradable metallic surfaces in directly controlling the drug release without the need of external electrical stimulus.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33983686</pmid><doi>10.1002/jbm.b.34866</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7905-1913</orcidid><orcidid>https://orcid.org/0000-0002-4387-431X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2021-12, Vol.109 (12), p.2184-2198
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2526306656
source MEDLINE; Wiley Online Library All Journals
subjects Alloys - chemistry
Anodic dissolution
Biocompatible Materials - chemistry
Biodegradability
biodegradable metals
Biodegradation
Biomedical materials
controlled release
Corrosion
Curcumin
Degradation
degradation‐driven release
Dissolution
Electrical stimuli
Electrochemistry
Grooves
Iron
Materials research
Materials science
Materials Testing
Morphology
Zinc
Zinc - chemistry
Zinc coatings
title Degradation‐triggered release from biodegradable metallic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%E2%80%90triggered%20release%20from%20biodegradable%20metallic%20surfaces&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Md%20Yusop,%20Abdul%20Hakim&rft.date=2021-12&rft.volume=109&rft.issue=12&rft.spage=2184&rft.epage=2198&rft.pages=2184-2198&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34866&rft_dat=%3Cproquest_cross%3E2578681964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578681964&rft_id=info:pmid/33983686&rfr_iscdi=true