Identification of the iron-limitation stimulon in Staphylococcus lugdunensis

During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2021-08, Vol.203 (6), p.3687-3694
Hauptverfasser: Aubourg, Marion, Gravey, François, Dhalluin, Anne, Giard, Jean-Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3694
container_issue 6
container_start_page 3687
container_title Archives of microbiology
container_volume 203
creator Aubourg, Marion
Gravey, François
Dhalluin, Anne
Giard, Jean-Christophe
description During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator. One hundred and seventy-five genes were identified as members of the iron-limitation stimulon (127 up- and 48 downregulated). Six gene clusters known or likely required for the acquisition of iron have been identified. Among them, a novel Energy-Coupling Factor type transporter (ECF), homologous to the lhaSTA operon, has been found into a 13-gene putative operon and strongly overexpressed under iron-limitation condition. Moreover, the transcription of genes involved in resistance to oxidative stress (including catalase), virulence, transcriptional regulation, and hemin detoxification were also modified. These data provide some answers on the cellular response to the iron-limitation stress that is important for the opportunistic behavior of this pathogen.
doi_str_mv 10.1007/s00203-021-02342-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2526306552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526306552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-14a73f73038f3369ae3fdf3f728b30c564dca7838397e17f8274e3a4324efedb3</originalsourceid><addsrcrecordid>eNp9kE9PwyAYh4nRuDn9Ah5MEy9eqsDbDno0xj9LlnhQE2-EUdhYWpiFHvbtZXZq4sEDecn7PvyAB6Fzgq8JxuwmYEwx5JiStKCgOT1AY1IAzTGj74dojAHTnFcAI3QSwhpjQjnnx2gEUHEoOB-j-azWLlpjlYzWu8ybLK50Zjvv8sa2Ng7tEG3bN2ljXfYS5Wa1bbzySvUha_pl3Tvtgg2n6MjIJuizfZ2gt4f717unfP78OLu7necKWBlzUkgGhgEGbgCmldRgapM6lC8Aq3Ja1EoyDhwqpgkznLJCg0wfK7TR9QIm6GrI3XT-o9chitYGpZtGOu37IGhJp4CnZUkTevkHXfu-c-l1iSqB0JIXkCg6UKrzIXTaiE1nW9ltBcFi51oMrkVyLb5ci130xT66X7S6_jnyLTcBMAAhjdxSd793_xP7CdF-iY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553125843</pqid></control><display><type>article</type><title>Identification of the iron-limitation stimulon in Staphylococcus lugdunensis</title><source>SpringerLink Journals</source><creator>Aubourg, Marion ; Gravey, François ; Dhalluin, Anne ; Giard, Jean-Christophe</creator><creatorcontrib>Aubourg, Marion ; Gravey, François ; Dhalluin, Anne ; Giard, Jean-Christophe</creatorcontrib><description>During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator. One hundred and seventy-five genes were identified as members of the iron-limitation stimulon (127 up- and 48 downregulated). Six gene clusters known or likely required for the acquisition of iron have been identified. Among them, a novel Energy-Coupling Factor type transporter (ECF), homologous to the lhaSTA operon, has been found into a 13-gene putative operon and strongly overexpressed under iron-limitation condition. Moreover, the transcription of genes involved in resistance to oxidative stress (including catalase), virulence, transcriptional regulation, and hemin detoxification were also modified. These data provide some answers on the cellular response to the iron-limitation stress that is important for the opportunistic behavior of this pathogen.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-021-02342-2</identifier><identifier>PMID: 33983488</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Catalase ; Cell Biology ; Detoxification ; Ecology ; Gene clusters ; Gene regulation ; Genes ; Hemin ; Homology ; Iron ; Life Sciences ; Microbial Ecology ; Microbiology ; Opportunist infection ; Oxidation resistance ; Oxidative stress ; Pathogens ; Short Communication ; Staphylococcus ; Transcription ; Transcriptomics ; Virulence</subject><ispartof>Archives of microbiology, 2021-08, Vol.203 (6), p.3687-3694</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-14a73f73038f3369ae3fdf3f728b30c564dca7838397e17f8274e3a4324efedb3</citedby><cites>FETCH-LOGICAL-c375t-14a73f73038f3369ae3fdf3f728b30c564dca7838397e17f8274e3a4324efedb3</cites><orcidid>0000-0001-8588-2732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-021-02342-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-021-02342-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33983488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aubourg, Marion</creatorcontrib><creatorcontrib>Gravey, François</creatorcontrib><creatorcontrib>Dhalluin, Anne</creatorcontrib><creatorcontrib>Giard, Jean-Christophe</creatorcontrib><title>Identification of the iron-limitation stimulon in Staphylococcus lugdunensis</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator. One hundred and seventy-five genes were identified as members of the iron-limitation stimulon (127 up- and 48 downregulated). Six gene clusters known or likely required for the acquisition of iron have been identified. Among them, a novel Energy-Coupling Factor type transporter (ECF), homologous to the lhaSTA operon, has been found into a 13-gene putative operon and strongly overexpressed under iron-limitation condition. Moreover, the transcription of genes involved in resistance to oxidative stress (including catalase), virulence, transcriptional regulation, and hemin detoxification were also modified. These data provide some answers on the cellular response to the iron-limitation stress that is important for the opportunistic behavior of this pathogen.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Catalase</subject><subject>Cell Biology</subject><subject>Detoxification</subject><subject>Ecology</subject><subject>Gene clusters</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Hemin</subject><subject>Homology</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Opportunist infection</subject><subject>Oxidation resistance</subject><subject>Oxidative stress</subject><subject>Pathogens</subject><subject>Short Communication</subject><subject>Staphylococcus</subject><subject>Transcription</subject><subject>Transcriptomics</subject><subject>Virulence</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9PwyAYh4nRuDn9Ah5MEy9eqsDbDno0xj9LlnhQE2-EUdhYWpiFHvbtZXZq4sEDecn7PvyAB6Fzgq8JxuwmYEwx5JiStKCgOT1AY1IAzTGj74dojAHTnFcAI3QSwhpjQjnnx2gEUHEoOB-j-azWLlpjlYzWu8ybLK50Zjvv8sa2Ng7tEG3bN2ljXfYS5Wa1bbzySvUha_pl3Tvtgg2n6MjIJuizfZ2gt4f717unfP78OLu7necKWBlzUkgGhgEGbgCmldRgapM6lC8Aq3Ja1EoyDhwqpgkznLJCg0wfK7TR9QIm6GrI3XT-o9chitYGpZtGOu37IGhJp4CnZUkTevkHXfu-c-l1iSqB0JIXkCg6UKrzIXTaiE1nW9ltBcFi51oMrkVyLb5ci130xT66X7S6_jnyLTcBMAAhjdxSd793_xP7CdF-iY4</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Aubourg, Marion</creator><creator>Gravey, François</creator><creator>Dhalluin, Anne</creator><creator>Giard, Jean-Christophe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8588-2732</orcidid></search><sort><creationdate>20210801</creationdate><title>Identification of the iron-limitation stimulon in Staphylococcus lugdunensis</title><author>Aubourg, Marion ; Gravey, François ; Dhalluin, Anne ; Giard, Jean-Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-14a73f73038f3369ae3fdf3f728b30c564dca7838397e17f8274e3a4324efedb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Catalase</topic><topic>Cell Biology</topic><topic>Detoxification</topic><topic>Ecology</topic><topic>Gene clusters</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Hemin</topic><topic>Homology</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Opportunist infection</topic><topic>Oxidation resistance</topic><topic>Oxidative stress</topic><topic>Pathogens</topic><topic>Short Communication</topic><topic>Staphylococcus</topic><topic>Transcription</topic><topic>Transcriptomics</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aubourg, Marion</creatorcontrib><creatorcontrib>Gravey, François</creatorcontrib><creatorcontrib>Dhalluin, Anne</creatorcontrib><creatorcontrib>Giard, Jean-Christophe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aubourg, Marion</au><au>Gravey, François</au><au>Dhalluin, Anne</au><au>Giard, Jean-Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the iron-limitation stimulon in Staphylococcus lugdunensis</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>203</volume><issue>6</issue><spage>3687</spage><epage>3694</epage><pages>3687-3694</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator. One hundred and seventy-five genes were identified as members of the iron-limitation stimulon (127 up- and 48 downregulated). Six gene clusters known or likely required for the acquisition of iron have been identified. Among them, a novel Energy-Coupling Factor type transporter (ECF), homologous to the lhaSTA operon, has been found into a 13-gene putative operon and strongly overexpressed under iron-limitation condition. Moreover, the transcription of genes involved in resistance to oxidative stress (including catalase), virulence, transcriptional regulation, and hemin detoxification were also modified. These data provide some answers on the cellular response to the iron-limitation stress that is important for the opportunistic behavior of this pathogen.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33983488</pmid><doi>10.1007/s00203-021-02342-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8588-2732</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2021-08, Vol.203 (6), p.3687-3694
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_2526306552
source SpringerLink Journals
subjects Biochemistry
Biomedical and Life Sciences
Biotechnology
Catalase
Cell Biology
Detoxification
Ecology
Gene clusters
Gene regulation
Genes
Hemin
Homology
Iron
Life Sciences
Microbial Ecology
Microbiology
Opportunist infection
Oxidation resistance
Oxidative stress
Pathogens
Short Communication
Staphylococcus
Transcription
Transcriptomics
Virulence
title Identification of the iron-limitation stimulon in Staphylococcus lugdunensis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20iron-limitation%20stimulon%20in%20Staphylococcus%20lugdunensis&rft.jtitle=Archives%20of%20microbiology&rft.au=Aubourg,%20Marion&rft.date=2021-08-01&rft.volume=203&rft.issue=6&rft.spage=3687&rft.epage=3694&rft.pages=3687-3694&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-021-02342-2&rft_dat=%3Cproquest_cross%3E2526306552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553125843&rft_id=info:pmid/33983488&rfr_iscdi=true