Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO2 Near Room Temperature
Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-07, Vol.60 (29), p.16149-16155 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16155 |
---|---|
container_issue | 29 |
container_start_page | 16149 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Wang, Quan Yi, Xianfeng Chen, Yu‐Cheng Xiao, Yao Zheng, Anmin Chen, Jian Lin Peng, Yung‐Kang |
description | Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para‐nitrophenyl phosphate (p‐NPP) as a model compound, we demonstrate that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation at temperatures as low as 40 °C. By probe‐assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron‐withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p‐NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol−1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
We demonstrate for the first time that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation near room temperature. The electron‐withdrawing effect of fluorine imposed on the TiO2(001) surface strongly manipulates the electronic state of surrounding Ti5C atoms by making them very acidic, facilitating not only the bidentate adsorption of p‐NPP but also its subsequent activation. |
doi_str_mv | 10.1002/anie.202104397 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2526148659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526148659</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2897-98708b25c02f1b508799ae4822a930f8f6e8d7a195e3415822e4b2bc1df630013</originalsourceid><addsrcrecordid>eNpd0btOwzAUBmALgWi5rIzIEgtLim-J7bEqBSpBK9EyR056IlIlcXCSom48As_Ik-CqpQOD5cv5dHTkH6ErSgaUEHZnqhwGjDBKBNfyCPVpyGjApeTH_iw4D6QKaQ-dNc3Ke6VIdIp63FsZRaKP7LiAtHW2ytOfr-95a1rAL75p3RWmzW2FbYbnnctMCniRt77SlXiYtvnaywbfQ_1uG7_cZu9na3BezhiegnH41doSL6CswZm2c3CBTjJTNHC538_R28N4MXoKnmePk9HwOaiZ0jLQShKVsDAlLKNJSJTU2oBQjBnNSaayCNRSGqpD4IKG_h1EwpKULrOIE0L5Obrd9a2d_eigaeMyb1IoClOB7ZqYhSyiQkWh9vTmH13ZzlV-Oq-E4kKTiHt1vVddUsIyrl1eGreJ_77SA70Dn3kBm0OdkngbVLwNKj4EFQ-nk_Hhxn8Bzw6HNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548349063</pqid></control><display><type>article</type><title>Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO2 Near Room Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Quan ; Yi, Xianfeng ; Chen, Yu‐Cheng ; Xiao, Yao ; Zheng, Anmin ; Chen, Jian Lin ; Peng, Yung‐Kang</creator><creatorcontrib>Wang, Quan ; Yi, Xianfeng ; Chen, Yu‐Cheng ; Xiao, Yao ; Zheng, Anmin ; Chen, Jian Lin ; Peng, Yung‐Kang</creatorcontrib><description>Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para‐nitrophenyl phosphate (p‐NPP) as a model compound, we demonstrate that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation at temperatures as low as 40 °C. By probe‐assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron‐withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p‐NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol−1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
We demonstrate for the first time that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation near room temperature. The electron‐withdrawing effect of fluorine imposed on the TiO2(001) surface strongly manipulates the electronic state of surrounding Ti5C atoms by making them very acidic, facilitating not only the bidentate adsorption of p‐NPP but also its subsequent activation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202104397</identifier><identifier>PMID: 33977664</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Abundance ; Agricultural wastes ; Cerium ; Cerium oxides ; Dephosphorylation ; electronic-state manipulation ; Environmental protection ; Fluorine ; NMR ; Nuclear magnetic resonance ; Phosphorus ; Room temperature ; Substrates ; surface characterization ; Titanium ; Titanium dioxide</subject><ispartof>Angewandte Chemie International Edition, 2021-07, Vol.60 (29), p.16149-16155</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9590-6902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202104397$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202104397$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33977664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Yi, Xianfeng</creatorcontrib><creatorcontrib>Chen, Yu‐Cheng</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Zheng, Anmin</creatorcontrib><creatorcontrib>Chen, Jian Lin</creatorcontrib><creatorcontrib>Peng, Yung‐Kang</creatorcontrib><title>Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO2 Near Room Temperature</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para‐nitrophenyl phosphate (p‐NPP) as a model compound, we demonstrate that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation at temperatures as low as 40 °C. By probe‐assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron‐withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p‐NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol−1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
We demonstrate for the first time that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation near room temperature. The electron‐withdrawing effect of fluorine imposed on the TiO2(001) surface strongly manipulates the electronic state of surrounding Ti5C atoms by making them very acidic, facilitating not only the bidentate adsorption of p‐NPP but also its subsequent activation.</description><subject>Abundance</subject><subject>Agricultural wastes</subject><subject>Cerium</subject><subject>Cerium oxides</subject><subject>Dephosphorylation</subject><subject>electronic-state manipulation</subject><subject>Environmental protection</subject><subject>Fluorine</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phosphorus</subject><subject>Room temperature</subject><subject>Substrates</subject><subject>surface characterization</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0btOwzAUBmALgWi5rIzIEgtLim-J7bEqBSpBK9EyR056IlIlcXCSom48As_Ik-CqpQOD5cv5dHTkH6ErSgaUEHZnqhwGjDBKBNfyCPVpyGjApeTH_iw4D6QKaQ-dNc3Ke6VIdIp63FsZRaKP7LiAtHW2ytOfr-95a1rAL75p3RWmzW2FbYbnnctMCniRt77SlXiYtvnaywbfQ_1uG7_cZu9na3BezhiegnH41doSL6CswZm2c3CBTjJTNHC538_R28N4MXoKnmePk9HwOaiZ0jLQShKVsDAlLKNJSJTU2oBQjBnNSaayCNRSGqpD4IKG_h1EwpKULrOIE0L5Obrd9a2d_eigaeMyb1IoClOB7ZqYhSyiQkWh9vTmH13ZzlV-Oq-E4kKTiHt1vVddUsIyrl1eGreJ_77SA70Dn3kBm0OdkngbVLwNKj4EFQ-nk_Hhxn8Bzw6HNQ</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Wang, Quan</creator><creator>Yi, Xianfeng</creator><creator>Chen, Yu‐Cheng</creator><creator>Xiao, Yao</creator><creator>Zheng, Anmin</creator><creator>Chen, Jian Lin</creator><creator>Peng, Yung‐Kang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9590-6902</orcidid></search><sort><creationdate>20210712</creationdate><title>Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO2 Near Room Temperature</title><author>Wang, Quan ; Yi, Xianfeng ; Chen, Yu‐Cheng ; Xiao, Yao ; Zheng, Anmin ; Chen, Jian Lin ; Peng, Yung‐Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2897-98708b25c02f1b508799ae4822a930f8f6e8d7a195e3415822e4b2bc1df630013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Agricultural wastes</topic><topic>Cerium</topic><topic>Cerium oxides</topic><topic>Dephosphorylation</topic><topic>electronic-state manipulation</topic><topic>Environmental protection</topic><topic>Fluorine</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phosphorus</topic><topic>Room temperature</topic><topic>Substrates</topic><topic>surface characterization</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Yi, Xianfeng</creatorcontrib><creatorcontrib>Chen, Yu‐Cheng</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Zheng, Anmin</creatorcontrib><creatorcontrib>Chen, Jian Lin</creatorcontrib><creatorcontrib>Peng, Yung‐Kang</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Quan</au><au>Yi, Xianfeng</au><au>Chen, Yu‐Cheng</au><au>Xiao, Yao</au><au>Zheng, Anmin</au><au>Chen, Jian Lin</au><au>Peng, Yung‐Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO2 Near Room Temperature</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-07-12</date><risdate>2021</risdate><volume>60</volume><issue>29</issue><spage>16149</spage><epage>16155</epage><pages>16149-16155</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para‐nitrophenyl phosphate (p‐NPP) as a model compound, we demonstrate that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation at temperatures as low as 40 °C. By probe‐assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron‐withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p‐NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol−1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
We demonstrate for the first time that TiO2 with a F‐modified (001) surface can activate p‐NPP dephosphorylation near room temperature. The electron‐withdrawing effect of fluorine imposed on the TiO2(001) surface strongly manipulates the electronic state of surrounding Ti5C atoms by making them very acidic, facilitating not only the bidentate adsorption of p‐NPP but also its subsequent activation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33977664</pmid><doi>10.1002/anie.202104397</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9590-6902</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-07, Vol.60 (29), p.16149-16155 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2526148659 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Abundance Agricultural wastes Cerium Cerium oxides Dephosphorylation electronic-state manipulation Environmental protection Fluorine NMR Nuclear magnetic resonance Phosphorus Room temperature Substrates surface characterization Titanium Titanium dioxide |
title | Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO2 Near Room Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%E2%80%90State%20Manipulation%20of%20Surface%20Titanium%20Activates%20Dephosphorylation%20Over%20TiO2%20Near%20Room%20Temperature&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Quan&rft.date=2021-07-12&rft.volume=60&rft.issue=29&rft.spage=16149&rft.epage=16155&rft.pages=16149-16155&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202104397&rft_dat=%3Cproquest_pubme%3E2526148659%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548349063&rft_id=info:pmid/33977664&rfr_iscdi=true |