Electrostatic Perturbations from the Protein Affect C−H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme

The nonheme iron dioxygenase 2‐(trimethylammonio)‐ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio‐ and chemoselective hydroxylation at the C1‐position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2021-06, Vol.27 (34), p.8851-8864
Hauptverfasser: Lin, Yen‐Ting, Ali, Hafiz Saqib, Visser, Sam P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8864
container_issue 34
container_start_page 8851
container_title Chemistry : a European journal
container_volume 27
creator Lin, Yen‐Ting
Ali, Hafiz Saqib
Visser, Sam P.
description The nonheme iron dioxygenase 2‐(trimethylammonio)‐ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio‐ and chemoselective hydroxylation at the C1‐position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2−H bond in favor of C1‐hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)‐oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1‐hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1−H and C2−H bonds of the substrate, and strongly strengthens the C2−H bond in the substrate‐bound orientation. Density functional theory studies on large active site cluster models of the nonheme iron dioxygenase TmpA elucidated the origin of its chemoselectivity and identify it as negative catalysis, where an otherwise favorable channel is blocked. The enzyme succeeds in this thanks to charged residues in the substrate binding pocket, which produce a local electric dipole moment (μD) and electric field and these electrostatic perturbations guide the reaction to a selective reaction mechanism.
doi_str_mv 10.1002/chem.202100791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2526134782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541286582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-c8142552d52c75057a0164007f3107fd27ecf0b36206e360a0ef9a7d7c6e3d53</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhyxJZYsMmg39ie7KcRoFBKlCps48c56aTKrEH2ykKT9B1N7wfT4KnU4rEho3to_v56OochF5TsqSEsPdmB-OSEZaEKugTtKCC0YwrKZ6iBSlylUnBixP0IoRrQkghOX-OTjgv1IoJtUA_qwFM9C5EHXuDL8DHyTfp7WzAnXcjjjvAF95F6C1ed12icfnr9m6Dz5xt8WX0YK_iLmDX3aOXUxOi1xGwTuPK6mYA_AWukuUN4FJHPcyhDzi5HfDtuF_js96F2SZ5GFT2xzzCS_Ss00OAVw_3Kdp-qLblJjv_-vFTuT7PTE4JzcyK5kwI1gpmlCBCaUJlnrLoOE1HyxSYjjRcMiKBS6IJdIVWrTJJtoKfondH27133yYIsR77YGAYtAU3hZoJJinPU1gJffsPeu0mb9NyicopW0lxTy2PlEmZBg9dvff9qP1cU1IfGqsPjdWPjaUPbx5sp2aE9hH_U1ECiiPwvR9g_o9dXW6qz3_NfwNZ4aPC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541286582</pqid></control><display><type>article</type><title>Electrostatic Perturbations from the Protein Affect C−H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Yen‐Ting ; Ali, Hafiz Saqib ; Visser, Sam P.</creator><creatorcontrib>Lin, Yen‐Ting ; Ali, Hafiz Saqib ; Visser, Sam P.</creatorcontrib><description>The nonheme iron dioxygenase 2‐(trimethylammonio)‐ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio‐ and chemoselective hydroxylation at the C1‐position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2−H bond in favor of C1‐hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)‐oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1‐hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1−H and C2−H bonds of the substrate, and strongly strengthens the C2−H bond in the substrate‐bound orientation. Density functional theory studies on large active site cluster models of the nonheme iron dioxygenase TmpA elucidated the origin of its chemoselectivity and identify it as negative catalysis, where an otherwise favorable channel is blocked. The enzyme succeeds in this thanks to charged residues in the substrate binding pocket, which produce a local electric dipole moment (μD) and electric field and these electrostatic perturbations guide the reaction to a selective reaction mechanism.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202100791</identifier><identifier>PMID: 33978257</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biosynthesis ; Bonding strength ; Carnitine ; Catalysis ; Chemistry ; Density functional theory ; Dioxygenase ; Dipole moments ; Electric dipoles ; electric field effects ; Electric fields ; enzyme mechanism ; Enzymes ; Glycine ; Glycine betaine ; Hydrogen bonds ; Hydroxylation ; Iron ; Perturbation ; Proteins ; Reaction mechanisms ; Residues ; Selectivity ; Substrates</subject><ispartof>Chemistry : a European journal, 2021-06, Vol.27 (34), p.8851-8864</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-c8142552d52c75057a0164007f3107fd27ecf0b36206e360a0ef9a7d7c6e3d53</citedby><cites>FETCH-LOGICAL-c4101-c8142552d52c75057a0164007f3107fd27ecf0b36206e360a0ef9a7d7c6e3d53</cites><orcidid>0000-0002-4475-8804 ; 0000-0001-5770-5376 ; 0000-0002-2620-8788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202100791$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202100791$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33978257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yen‐Ting</creatorcontrib><creatorcontrib>Ali, Hafiz Saqib</creatorcontrib><creatorcontrib>Visser, Sam P.</creatorcontrib><title>Electrostatic Perturbations from the Protein Affect C−H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The nonheme iron dioxygenase 2‐(trimethylammonio)‐ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio‐ and chemoselective hydroxylation at the C1‐position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2−H bond in favor of C1‐hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)‐oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1‐hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1−H and C2−H bonds of the substrate, and strongly strengthens the C2−H bond in the substrate‐bound orientation. Density functional theory studies on large active site cluster models of the nonheme iron dioxygenase TmpA elucidated the origin of its chemoselectivity and identify it as negative catalysis, where an otherwise favorable channel is blocked. The enzyme succeeds in this thanks to charged residues in the substrate binding pocket, which produce a local electric dipole moment (μD) and electric field and these electrostatic perturbations guide the reaction to a selective reaction mechanism.</description><subject>Biosynthesis</subject><subject>Bonding strength</subject><subject>Carnitine</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Density functional theory</subject><subject>Dioxygenase</subject><subject>Dipole moments</subject><subject>Electric dipoles</subject><subject>electric field effects</subject><subject>Electric fields</subject><subject>enzyme mechanism</subject><subject>Enzymes</subject><subject>Glycine</subject><subject>Glycine betaine</subject><subject>Hydrogen bonds</subject><subject>Hydroxylation</subject><subject>Iron</subject><subject>Perturbation</subject><subject>Proteins</subject><subject>Reaction mechanisms</subject><subject>Residues</subject><subject>Selectivity</subject><subject>Substrates</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokNhyxJZYsMmg39ie7KcRoFBKlCps48c56aTKrEH2ykKT9B1N7wfT4KnU4rEho3to_v56OochF5TsqSEsPdmB-OSEZaEKugTtKCC0YwrKZ6iBSlylUnBixP0IoRrQkghOX-OTjgv1IoJtUA_qwFM9C5EHXuDL8DHyTfp7WzAnXcjjjvAF95F6C1ed12icfnr9m6Dz5xt8WX0YK_iLmDX3aOXUxOi1xGwTuPK6mYA_AWukuUN4FJHPcyhDzi5HfDtuF_js96F2SZ5GFT2xzzCS_Ss00OAVw_3Kdp-qLblJjv_-vFTuT7PTE4JzcyK5kwI1gpmlCBCaUJlnrLoOE1HyxSYjjRcMiKBS6IJdIVWrTJJtoKfondH27133yYIsR77YGAYtAU3hZoJJinPU1gJffsPeu0mb9NyicopW0lxTy2PlEmZBg9dvff9qP1cU1IfGqsPjdWPjaUPbx5sp2aE9hH_U1ECiiPwvR9g_o9dXW6qz3_NfwNZ4aPC</recordid><startdate>20210616</startdate><enddate>20210616</enddate><creator>Lin, Yen‐Ting</creator><creator>Ali, Hafiz Saqib</creator><creator>Visser, Sam P.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4475-8804</orcidid><orcidid>https://orcid.org/0000-0001-5770-5376</orcidid><orcidid>https://orcid.org/0000-0002-2620-8788</orcidid></search><sort><creationdate>20210616</creationdate><title>Electrostatic Perturbations from the Protein Affect C−H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme</title><author>Lin, Yen‐Ting ; Ali, Hafiz Saqib ; Visser, Sam P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-c8142552d52c75057a0164007f3107fd27ecf0b36206e360a0ef9a7d7c6e3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biosynthesis</topic><topic>Bonding strength</topic><topic>Carnitine</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Density functional theory</topic><topic>Dioxygenase</topic><topic>Dipole moments</topic><topic>Electric dipoles</topic><topic>electric field effects</topic><topic>Electric fields</topic><topic>enzyme mechanism</topic><topic>Enzymes</topic><topic>Glycine</topic><topic>Glycine betaine</topic><topic>Hydrogen bonds</topic><topic>Hydroxylation</topic><topic>Iron</topic><topic>Perturbation</topic><topic>Proteins</topic><topic>Reaction mechanisms</topic><topic>Residues</topic><topic>Selectivity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yen‐Ting</creatorcontrib><creatorcontrib>Ali, Hafiz Saqib</creatorcontrib><creatorcontrib>Visser, Sam P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yen‐Ting</au><au>Ali, Hafiz Saqib</au><au>Visser, Sam P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Perturbations from the Protein Affect C−H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2021-06-16</date><risdate>2021</risdate><volume>27</volume><issue>34</issue><spage>8851</spage><epage>8864</epage><pages>8851-8864</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The nonheme iron dioxygenase 2‐(trimethylammonio)‐ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio‐ and chemoselective hydroxylation at the C1‐position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2−H bond in favor of C1‐hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)‐oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1‐hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1−H and C2−H bonds of the substrate, and strongly strengthens the C2−H bond in the substrate‐bound orientation. Density functional theory studies on large active site cluster models of the nonheme iron dioxygenase TmpA elucidated the origin of its chemoselectivity and identify it as negative catalysis, where an otherwise favorable channel is blocked. The enzyme succeeds in this thanks to charged residues in the substrate binding pocket, which produce a local electric dipole moment (μD) and electric field and these electrostatic perturbations guide the reaction to a selective reaction mechanism.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33978257</pmid><doi>10.1002/chem.202100791</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4475-8804</orcidid><orcidid>https://orcid.org/0000-0001-5770-5376</orcidid><orcidid>https://orcid.org/0000-0002-2620-8788</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-06, Vol.27 (34), p.8851-8864
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2526134782
source Wiley Online Library Journals Frontfile Complete
subjects Biosynthesis
Bonding strength
Carnitine
Catalysis
Chemistry
Density functional theory
Dioxygenase
Dipole moments
Electric dipoles
electric field effects
Electric fields
enzyme mechanism
Enzymes
Glycine
Glycine betaine
Hydrogen bonds
Hydroxylation
Iron
Perturbation
Proteins
Reaction mechanisms
Residues
Selectivity
Substrates
title Electrostatic Perturbations from the Protein Affect C−H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Perturbations%20from%20the%20Protein%20Affect%20C%E2%88%92H%20Bond%20Strengths%20of%20the%20Substrate%20and%20Enable%20Negative%20Catalysis%20in%20the%20TmpA%20Biosynthesis%20Enzyme&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Lin,%20Yen%E2%80%90Ting&rft.date=2021-06-16&rft.volume=27&rft.issue=34&rft.spage=8851&rft.epage=8864&rft.pages=8851-8864&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202100791&rft_dat=%3Cproquest_cross%3E2541286582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541286582&rft_id=info:pmid/33978257&rfr_iscdi=true