Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction

Herein, the α-Bi 2 O 3 nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C 3 N 4 (N 0.1 /Bi 2 O 3 /g-C 3 N 4 ) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N 0.1 /Bi 2 O 3 /g-C 3 N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-09, Vol.28 (36), p.50747-50766
Hauptverfasser: Khazaee, Zeynab, Mahjoub, Ali Reza, Khavar, Amir Hossein Cheshme, Srivastava, Varsha, Sillanpää, Mika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50766
container_issue 36
container_start_page 50747
container_title Environmental science and pollution research international
container_volume 28
creator Khazaee, Zeynab
Mahjoub, Ali Reza
Khavar, Amir Hossein Cheshme
Srivastava, Varsha
Sillanpää, Mika
description Herein, the α-Bi 2 O 3 nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C 3 N 4 (N 0.1 /Bi 2 O 3 /g-C 3 N 4 ) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N 0.1 /Bi 2 O 3 /g-C 3 N 4 (3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi 2 O 3 . The results from XPS confirmed the substitution of nitrogen with various oxidation states from N 3+ to N x+ ( x < 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO 3 − in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of p states, comprised of N 2 p , O 2 p , and Bi 6 P states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N 0.1 /Bi 2 O 3 /g-C 3 N 4 nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi 2 O 3 by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N 0.1 /Bi 2 O 3 and g-C 3 N 4 . The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water. Graphical abstract
doi_str_mv 10.1007/s11356-021-14308-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2525651292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525651292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxYMoOO76D3gKePESt_LV6famg1-wuAfXc0j3VNosvcmYpIed_34zjiB48FQU9XuP4j1CXnF4ywHMVeFc6o6B4IwrCT1TT8iGd1wxo4bhKdnAoBTjUqnn5EUpdwACBmE25PB9HdmCB1woxjlExBziTEvNruJ8pMnTGGpOM0YW4m6dcEc_BHEjr2a2ld_UO-roAXNxNSxI9z9TTZOrbjmWSn3KND2EXbulSF3c0YzN4bRdkmfeLQVf_pkX5Menj7fbL-z65vPX7ftrNkktKjOonDCet1dB9aYTXvkRQAs19lxrGPmgRz8Ij0ZiN8mGdwBoXO8HPUEvL8ibs-8-p18rlmrvQ5lwWVzEtBYrtNCd5mIQDX39D3qX1hzbd40ysuUr4USJMzXlVEpGb_c53Lt8tBzsqQp7rsK2KuzvKqxqInkWlf0pXcx_rf-jegSoMYtZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573135302</pqid></control><display><type>article</type><title>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</title><source>Springer journals</source><creator>Khazaee, Zeynab ; Mahjoub, Ali Reza ; Khavar, Amir Hossein Cheshme ; Srivastava, Varsha ; Sillanpää, Mika</creator><creatorcontrib>Khazaee, Zeynab ; Mahjoub, Ali Reza ; Khavar, Amir Hossein Cheshme ; Srivastava, Varsha ; Sillanpää, Mika</creatorcontrib><description>Herein, the α-Bi 2 O 3 nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C 3 N 4 (N 0.1 /Bi 2 O 3 /g-C 3 N 4 ) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N 0.1 /Bi 2 O 3 /g-C 3 N 4 (3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi 2 O 3 . The results from XPS confirmed the substitution of nitrogen with various oxidation states from N 3+ to N x+ ( x &lt; 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO 3 − in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of p states, comprised of N 2 p , O 2 p , and Bi 6 P states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N 0.1 /Bi 2 O 3 /g-C 3 N 4 nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi 2 O 3 by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N 0.1 /Bi 2 O 3 and g-C 3 N 4 . The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water. Graphical abstract</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-14308-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bismuth oxides ; Bismuth trioxide ; Carbon nitride ; Carrier mobility ; Catalytic activity ; Chromium ; Color removal ; Contaminants ; Crystal defects ; Crystal structure ; Current carriers ; Design defects ; Earth and Environmental Science ; Ecotoxicology ; Electromagnetic absorption ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Heterojunctions ; Irradiation ; Light irradiation ; Mathematical analysis ; Nanocomposites ; Nanocrystals ; Nitrogen ; Nitrogen oxides ; Oxidation ; Photocatalysis ; Photocatalysts ; Photochemicals ; Photooxidation ; Reaction mechanisms ; Reduction ; Research Article ; Spectroscopy ; Substitution reactions ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-09, Vol.28 (36), p.50747-50766</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</citedby><cites>FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</cites><orcidid>0000-0003-0622-3291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-021-14308-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-021-14308-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khazaee, Zeynab</creatorcontrib><creatorcontrib>Mahjoub, Ali Reza</creatorcontrib><creatorcontrib>Khavar, Amir Hossein Cheshme</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><title>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>Herein, the α-Bi 2 O 3 nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C 3 N 4 (N 0.1 /Bi 2 O 3 /g-C 3 N 4 ) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N 0.1 /Bi 2 O 3 /g-C 3 N 4 (3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi 2 O 3 . The results from XPS confirmed the substitution of nitrogen with various oxidation states from N 3+ to N x+ ( x &lt; 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO 3 − in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of p states, comprised of N 2 p , O 2 p , and Bi 6 P states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N 0.1 /Bi 2 O 3 /g-C 3 N 4 nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi 2 O 3 by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N 0.1 /Bi 2 O 3 and g-C 3 N 4 . The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water. Graphical abstract</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Carbon nitride</subject><subject>Carrier mobility</subject><subject>Catalytic activity</subject><subject>Chromium</subject><subject>Color removal</subject><subject>Contaminants</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Current carriers</subject><subject>Design defects</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electromagnetic absorption</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Heterojunctions</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Mathematical analysis</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nitrogen</subject><subject>Nitrogen oxides</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photochemicals</subject><subject>Photooxidation</subject><subject>Reaction mechanisms</subject><subject>Reduction</subject><subject>Research Article</subject><subject>Spectroscopy</subject><subject>Substitution reactions</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2LFDEQxYMoOO76D3gKePESt_LV6famg1-wuAfXc0j3VNosvcmYpIed_34zjiB48FQU9XuP4j1CXnF4ywHMVeFc6o6B4IwrCT1TT8iGd1wxo4bhKdnAoBTjUqnn5EUpdwACBmE25PB9HdmCB1woxjlExBziTEvNruJ8pMnTGGpOM0YW4m6dcEc_BHEjr2a2ld_UO-roAXNxNSxI9z9TTZOrbjmWSn3KND2EXbulSF3c0YzN4bRdkmfeLQVf_pkX5Menj7fbL-z65vPX7ftrNkktKjOonDCet1dB9aYTXvkRQAs19lxrGPmgRz8Ij0ZiN8mGdwBoXO8HPUEvL8ibs-8-p18rlmrvQ5lwWVzEtBYrtNCd5mIQDX39D3qX1hzbd40ysuUr4USJMzXlVEpGb_c53Lt8tBzsqQp7rsK2KuzvKqxqInkWlf0pXcx_rf-jegSoMYtZ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khazaee, Zeynab</creator><creator>Mahjoub, Ali Reza</creator><creator>Khavar, Amir Hossein Cheshme</creator><creator>Srivastava, Varsha</creator><creator>Sillanpää, Mika</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0622-3291</orcidid></search><sort><creationdate>20210901</creationdate><title>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</title><author>Khazaee, Zeynab ; Mahjoub, Ali Reza ; Khavar, Amir Hossein Cheshme ; Srivastava, Varsha ; Sillanpää, Mika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Carbon nitride</topic><topic>Carrier mobility</topic><topic>Catalytic activity</topic><topic>Chromium</topic><topic>Color removal</topic><topic>Contaminants</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Current carriers</topic><topic>Design defects</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electromagnetic absorption</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Heterojunctions</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Mathematical analysis</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nitrogen</topic><topic>Nitrogen oxides</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photochemicals</topic><topic>Photooxidation</topic><topic>Reaction mechanisms</topic><topic>Reduction</topic><topic>Research Article</topic><topic>Spectroscopy</topic><topic>Substitution reactions</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khazaee, Zeynab</creatorcontrib><creatorcontrib>Mahjoub, Ali Reza</creatorcontrib><creatorcontrib>Khavar, Amir Hossein Cheshme</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khazaee, Zeynab</au><au>Mahjoub, Ali Reza</au><au>Khavar, Amir Hossein Cheshme</au><au>Srivastava, Varsha</au><au>Sillanpää, Mika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>28</volume><issue>36</issue><spage>50747</spage><epage>50766</epage><pages>50747-50766</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Herein, the α-Bi 2 O 3 nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C 3 N 4 (N 0.1 /Bi 2 O 3 /g-C 3 N 4 ) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N 0.1 /Bi 2 O 3 /g-C 3 N 4 (3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi 2 O 3 . The results from XPS confirmed the substitution of nitrogen with various oxidation states from N 3+ to N x+ ( x &lt; 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO 3 − in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of p states, comprised of N 2 p , O 2 p , and Bi 6 P states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N 0.1 /Bi 2 O 3 /g-C 3 N 4 nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi 2 O 3 by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N 0.1 /Bi 2 O 3 and g-C 3 N 4 . The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-021-14308-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0622-3291</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2021-09, Vol.28 (36), p.50747-50766
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2525651292
source Springer journals
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bismuth oxides
Bismuth trioxide
Carbon nitride
Carrier mobility
Catalytic activity
Chromium
Color removal
Contaminants
Crystal defects
Crystal structure
Current carriers
Design defects
Earth and Environmental Science
Ecotoxicology
Electromagnetic absorption
Environment
Environmental Chemistry
Environmental Health
Environmental science
Heterojunctions
Irradiation
Light irradiation
Mathematical analysis
Nanocomposites
Nanocrystals
Nitrogen
Nitrogen oxides
Oxidation
Photocatalysis
Photocatalysts
Photochemicals
Photooxidation
Reaction mechanisms
Reduction
Research Article
Spectroscopy
Substitution reactions
Waste Water Technology
Water Management
Water Pollution Control
title Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-level%20engineering%20strategy%20of%20nitrogen-induced%20Bi2O3/g-C3N4:%20a%20versatile%20photocatalyst%20for%20oxidation%20and%20reduction&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Khazaee,%20Zeynab&rft.date=2021-09-01&rft.volume=28&rft.issue=36&rft.spage=50747&rft.epage=50766&rft.pages=50747-50766&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-14308-4&rft_dat=%3Cproquest_cross%3E2525651292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573135302&rft_id=info:pmid/&rfr_iscdi=true