Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction
Herein, the α-Bi 2 O 3 nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C 3 N 4 (N 0.1 /Bi 2 O 3 /g-C 3 N 4 ) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N 0.1 /Bi 2 O 3 /g-C 3 N...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-09, Vol.28 (36), p.50747-50766 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50766 |
---|---|
container_issue | 36 |
container_start_page | 50747 |
container_title | Environmental science and pollution research international |
container_volume | 28 |
creator | Khazaee, Zeynab Mahjoub, Ali Reza Khavar, Amir Hossein Cheshme Srivastava, Varsha Sillanpää, Mika |
description | Herein, the α-Bi
2
O
3
nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C
3
N
4
(N
0.1
/Bi
2
O
3
/g-C
3
N
4
) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N
0.1
/Bi
2
O
3
/g-C
3
N
4
(3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi
2
O
3
. The results from XPS confirmed the substitution of nitrogen with various oxidation states from N
3+
to N
x+
(
x
< 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO
3
−
in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of
p
states, comprised of N 2
p
, O 2
p
, and Bi 6
P
states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N
0.1
/Bi
2
O
3
/g-C
3
N
4
nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi
2
O
3
by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N
0.1
/Bi
2
O
3
and g-C
3
N
4
. The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water.
Graphical abstract |
doi_str_mv | 10.1007/s11356-021-14308-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2525651292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525651292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxYMoOO76D3gKePESt_LV6famg1-wuAfXc0j3VNosvcmYpIed_34zjiB48FQU9XuP4j1CXnF4ywHMVeFc6o6B4IwrCT1TT8iGd1wxo4bhKdnAoBTjUqnn5EUpdwACBmE25PB9HdmCB1woxjlExBziTEvNruJ8pMnTGGpOM0YW4m6dcEc_BHEjr2a2ld_UO-roAXNxNSxI9z9TTZOrbjmWSn3KND2EXbulSF3c0YzN4bRdkmfeLQVf_pkX5Menj7fbL-z65vPX7ftrNkktKjOonDCet1dB9aYTXvkRQAs19lxrGPmgRz8Ij0ZiN8mGdwBoXO8HPUEvL8ibs-8-p18rlmrvQ5lwWVzEtBYrtNCd5mIQDX39D3qX1hzbd40ysuUr4USJMzXlVEpGb_c53Lt8tBzsqQp7rsK2KuzvKqxqInkWlf0pXcx_rf-jegSoMYtZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573135302</pqid></control><display><type>article</type><title>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</title><source>Springer journals</source><creator>Khazaee, Zeynab ; Mahjoub, Ali Reza ; Khavar, Amir Hossein Cheshme ; Srivastava, Varsha ; Sillanpää, Mika</creator><creatorcontrib>Khazaee, Zeynab ; Mahjoub, Ali Reza ; Khavar, Amir Hossein Cheshme ; Srivastava, Varsha ; Sillanpää, Mika</creatorcontrib><description>Herein, the α-Bi
2
O
3
nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C
3
N
4
(N
0.1
/Bi
2
O
3
/g-C
3
N
4
) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N
0.1
/Bi
2
O
3
/g-C
3
N
4
(3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi
2
O
3
. The results from XPS confirmed the substitution of nitrogen with various oxidation states from N
3+
to N
x+
(
x
< 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO
3
−
in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of
p
states, comprised of N 2
p
, O 2
p
, and Bi 6
P
states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N
0.1
/Bi
2
O
3
/g-C
3
N
4
nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi
2
O
3
by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N
0.1
/Bi
2
O
3
and g-C
3
N
4
. The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water.
Graphical abstract</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-14308-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bismuth oxides ; Bismuth trioxide ; Carbon nitride ; Carrier mobility ; Catalytic activity ; Chromium ; Color removal ; Contaminants ; Crystal defects ; Crystal structure ; Current carriers ; Design defects ; Earth and Environmental Science ; Ecotoxicology ; Electromagnetic absorption ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Heterojunctions ; Irradiation ; Light irradiation ; Mathematical analysis ; Nanocomposites ; Nanocrystals ; Nitrogen ; Nitrogen oxides ; Oxidation ; Photocatalysis ; Photocatalysts ; Photochemicals ; Photooxidation ; Reaction mechanisms ; Reduction ; Research Article ; Spectroscopy ; Substitution reactions ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-09, Vol.28 (36), p.50747-50766</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</citedby><cites>FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</cites><orcidid>0000-0003-0622-3291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-021-14308-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-021-14308-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khazaee, Zeynab</creatorcontrib><creatorcontrib>Mahjoub, Ali Reza</creatorcontrib><creatorcontrib>Khavar, Amir Hossein Cheshme</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><title>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>Herein, the α-Bi
2
O
3
nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C
3
N
4
(N
0.1
/Bi
2
O
3
/g-C
3
N
4
) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N
0.1
/Bi
2
O
3
/g-C
3
N
4
(3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi
2
O
3
. The results from XPS confirmed the substitution of nitrogen with various oxidation states from N
3+
to N
x+
(
x
< 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO
3
−
in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of
p
states, comprised of N 2
p
, O 2
p
, and Bi 6
P
states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N
0.1
/Bi
2
O
3
/g-C
3
N
4
nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi
2
O
3
by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N
0.1
/Bi
2
O
3
and g-C
3
N
4
. The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water.
Graphical abstract</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Carbon nitride</subject><subject>Carrier mobility</subject><subject>Catalytic activity</subject><subject>Chromium</subject><subject>Color removal</subject><subject>Contaminants</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Current carriers</subject><subject>Design defects</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electromagnetic absorption</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Heterojunctions</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Mathematical analysis</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nitrogen</subject><subject>Nitrogen oxides</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photochemicals</subject><subject>Photooxidation</subject><subject>Reaction mechanisms</subject><subject>Reduction</subject><subject>Research Article</subject><subject>Spectroscopy</subject><subject>Substitution reactions</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2LFDEQxYMoOO76D3gKePESt_LV6famg1-wuAfXc0j3VNosvcmYpIed_34zjiB48FQU9XuP4j1CXnF4ywHMVeFc6o6B4IwrCT1TT8iGd1wxo4bhKdnAoBTjUqnn5EUpdwACBmE25PB9HdmCB1woxjlExBziTEvNruJ8pMnTGGpOM0YW4m6dcEc_BHEjr2a2ld_UO-roAXNxNSxI9z9TTZOrbjmWSn3KND2EXbulSF3c0YzN4bRdkmfeLQVf_pkX5Menj7fbL-z65vPX7ftrNkktKjOonDCet1dB9aYTXvkRQAs19lxrGPmgRz8Ij0ZiN8mGdwBoXO8HPUEvL8ibs-8-p18rlmrvQ5lwWVzEtBYrtNCd5mIQDX39D3qX1hzbd40ysuUr4USJMzXlVEpGb_c53Lt8tBzsqQp7rsK2KuzvKqxqInkWlf0pXcx_rf-jegSoMYtZ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khazaee, Zeynab</creator><creator>Mahjoub, Ali Reza</creator><creator>Khavar, Amir Hossein Cheshme</creator><creator>Srivastava, Varsha</creator><creator>Sillanpää, Mika</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0622-3291</orcidid></search><sort><creationdate>20210901</creationdate><title>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</title><author>Khazaee, Zeynab ; Mahjoub, Ali Reza ; Khavar, Amir Hossein Cheshme ; Srivastava, Varsha ; Sillanpää, Mika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7e4a27f1927048762f4fb00524b81550b195bf92fe73e6c3e4a600e7a8f95c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Carbon nitride</topic><topic>Carrier mobility</topic><topic>Catalytic activity</topic><topic>Chromium</topic><topic>Color removal</topic><topic>Contaminants</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Current carriers</topic><topic>Design defects</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electromagnetic absorption</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Heterojunctions</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Mathematical analysis</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nitrogen</topic><topic>Nitrogen oxides</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photochemicals</topic><topic>Photooxidation</topic><topic>Reaction mechanisms</topic><topic>Reduction</topic><topic>Research Article</topic><topic>Spectroscopy</topic><topic>Substitution reactions</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khazaee, Zeynab</creatorcontrib><creatorcontrib>Mahjoub, Ali Reza</creatorcontrib><creatorcontrib>Khavar, Amir Hossein Cheshme</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khazaee, Zeynab</au><au>Mahjoub, Ali Reza</au><au>Khavar, Amir Hossein Cheshme</au><au>Srivastava, Varsha</au><au>Sillanpää, Mika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>28</volume><issue>36</issue><spage>50747</spage><epage>50766</epage><pages>50747-50766</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Herein, the α-Bi
2
O
3
nanocrystal decorated by nitrogen dopant and its heterojunction nanocomposite with g-C
3
N
4
(N
0.1
/Bi
2
O
3
/g-C
3
N
4
) is successfully fabricated for the first time, for photo-oxidation of RhB and photo-reduction of Cr(VI) to Cr(III). The resulting N
0.1
/Bi
2
O
3
/g-C
3
N
4
(3%) nanocomposite showed an optimal Cr(VI) photo-reduction and RhB photo-oxidation rates under visible-light irradiation, being 3–4 times higher than that of pure α-Bi
2
O
3
. The results from XPS confirmed the substitution of nitrogen with various oxidation states from N
3+
to N
x+
(
x
< 5), due to the existence of different nitrogen oxides including N−O, O−N=O, and NO
3
−
in the crystal structure. We investigated the reaction mechanism using catalytic tests, impedance spectroscopy, EPR technique, and density functional calculations. The DFT calculations presented the appearance of a new mid-gap hybrid of
p
states, comprised of N 2
p
, O 2
p
, and Bi 6
P
states, which enhance light absorption capacity and narrow band gap. The theoretical results were in excellent agreement with experimental UV-Vis data. The N
0.1
/Bi
2
O
3
/g-C
3
N
4
nanocomposite exhibited acceptable practical application value and recycling ability for removal of the contaminants. Such improved photocatalytic activity is originated from the modified band positions, new electron evolution pathway, introducing defects in α-Bi
2
O
3
by insertion of N atoms into the Bi sites, and the enhanced charge carrier mobility between N
0.1
/Bi
2
O
3
and g-C
3
N
4
. The strategy to form nitrogen-doped bismuth-based nanocomposites may open a new opportunity to design atomic-level electronic defects by feasible methods to obtain a versatile photocatalyst material with simultaneous photo-reduction and photo-oxidation ability for removal of Cr(VI) and organic dyes from water.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-021-14308-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0622-3291</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2021-09, Vol.28 (36), p.50747-50766 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2525651292 |
source | Springer journals |
subjects | Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bismuth oxides Bismuth trioxide Carbon nitride Carrier mobility Catalytic activity Chromium Color removal Contaminants Crystal defects Crystal structure Current carriers Design defects Earth and Environmental Science Ecotoxicology Electromagnetic absorption Environment Environmental Chemistry Environmental Health Environmental science Heterojunctions Irradiation Light irradiation Mathematical analysis Nanocomposites Nanocrystals Nitrogen Nitrogen oxides Oxidation Photocatalysis Photocatalysts Photochemicals Photooxidation Reaction mechanisms Reduction Research Article Spectroscopy Substitution reactions Waste Water Technology Water Management Water Pollution Control |
title | Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-level%20engineering%20strategy%20of%20nitrogen-induced%20Bi2O3/g-C3N4:%20a%20versatile%20photocatalyst%20for%20oxidation%20and%20reduction&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Khazaee,%20Zeynab&rft.date=2021-09-01&rft.volume=28&rft.issue=36&rft.spage=50747&rft.epage=50766&rft.pages=50747-50766&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-14308-4&rft_dat=%3Cproquest_cross%3E2525651292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573135302&rft_id=info:pmid/&rfr_iscdi=true |