Electron and chemical kinetics in methane rf glow-discharge deposition plasmas

Experimental measurements and theoretical modeling of methane deposition plasmas have led to the identification of the most likely homogeneous and heterogeneous reaction paths leading to the deposition of amorphous carbon thin films. Experimental measurements of the voltage, current waveforms, mass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1989-01, Vol.65 (1), p.70-78
Hauptverfasser: Kline, Laurence E., Partlow, William D., Bies, William E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 70
container_title Journal of applied physics
container_volume 65
creator Kline, Laurence E.
Partlow, William D.
Bies, William E.
description Experimental measurements and theoretical modeling of methane deposition plasmas have led to the identification of the most likely homogeneous and heterogeneous reaction paths leading to the deposition of amorphous carbon thin films. Experimental measurements of the voltage, current waveforms, mass flow rates, and pressure are used as inputs to the model. The magnitude and flow-rate dependence of the discharge luminosity, film deposition rates, and downstream mass spectra are compared with the model predictions and used to identify the dominant reaction paths. The model uses Monte Carlo simulation of the electron kinetics to predict the electron impact dissociation and ionization rates. These rates provide input for a plug flow chemical kinetics model.
doi_str_mv 10.1063/1.343378
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25256439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25256439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-8cb0fad76f7ae0b2bd466983113f45b9ef07c130b549cd0555e7ac04b56acabf3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKvgI2QlbqZ-mSQzk6WU-gNFN7oOSeZLG838mEwR396Rurqbcy-HS8g1gxWDit-xFRec180JWTBoVFFLCadkAVCyolG1OicXOX8AMNZwtSAvm4huSkNPTd9St8cuOBPpZ-hxCi7T0NMOp73pkSZPd3H4LtqQ3d6kHdIWxyGHKcztMZrcmXxJzryJGa_-c0neHzZv66di-_r4vL7fFo6XYioaZ8Gbtq58bRBsaVtRVarhjHEvpFXooXaMg5VCuRaklFgbB8LKyjhjPV-Sm-PumIavA-ZJd7MVxjiLDoesS1nKSnA1g7dH0KUh54Rejyl0Jv1oBvrvMM308TD-CxLAXgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25256439</pqid></control><display><type>article</type><title>Electron and chemical kinetics in methane rf glow-discharge deposition plasmas</title><source>AIP Digital Archive</source><creator>Kline, Laurence E. ; Partlow, William D. ; Bies, William E.</creator><creatorcontrib>Kline, Laurence E. ; Partlow, William D. ; Bies, William E.</creatorcontrib><description>Experimental measurements and theoretical modeling of methane deposition plasmas have led to the identification of the most likely homogeneous and heterogeneous reaction paths leading to the deposition of amorphous carbon thin films. Experimental measurements of the voltage, current waveforms, mass flow rates, and pressure are used as inputs to the model. The magnitude and flow-rate dependence of the discharge luminosity, film deposition rates, and downstream mass spectra are compared with the model predictions and used to identify the dominant reaction paths. The model uses Monte Carlo simulation of the electron kinetics to predict the electron impact dissociation and ionization rates. These rates provide input for a plug flow chemical kinetics model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.343378</identifier><language>eng</language><ispartof>Journal of applied physics, 1989-01, Vol.65 (1), p.70-78</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-8cb0fad76f7ae0b2bd466983113f45b9ef07c130b549cd0555e7ac04b56acabf3</citedby><cites>FETCH-LOGICAL-c324t-8cb0fad76f7ae0b2bd466983113f45b9ef07c130b549cd0555e7ac04b56acabf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kline, Laurence E.</creatorcontrib><creatorcontrib>Partlow, William D.</creatorcontrib><creatorcontrib>Bies, William E.</creatorcontrib><title>Electron and chemical kinetics in methane rf glow-discharge deposition plasmas</title><title>Journal of applied physics</title><description>Experimental measurements and theoretical modeling of methane deposition plasmas have led to the identification of the most likely homogeneous and heterogeneous reaction paths leading to the deposition of amorphous carbon thin films. Experimental measurements of the voltage, current waveforms, mass flow rates, and pressure are used as inputs to the model. The magnitude and flow-rate dependence of the discharge luminosity, film deposition rates, and downstream mass spectra are compared with the model predictions and used to identify the dominant reaction paths. The model uses Monte Carlo simulation of the electron kinetics to predict the electron impact dissociation and ionization rates. These rates provide input for a plug flow chemical kinetics model.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKvgI2QlbqZ-mSQzk6WU-gNFN7oOSeZLG838mEwR396Rurqbcy-HS8g1gxWDit-xFRec180JWTBoVFFLCadkAVCyolG1OicXOX8AMNZwtSAvm4huSkNPTd9St8cuOBPpZ-hxCi7T0NMOp73pkSZPd3H4LtqQ3d6kHdIWxyGHKcztMZrcmXxJzryJGa_-c0neHzZv66di-_r4vL7fFo6XYioaZ8Gbtq58bRBsaVtRVarhjHEvpFXooXaMg5VCuRaklFgbB8LKyjhjPV-Sm-PumIavA-ZJd7MVxjiLDoesS1nKSnA1g7dH0KUh54Rejyl0Jv1oBvrvMM308TD-CxLAXgg</recordid><startdate>19890101</startdate><enddate>19890101</enddate><creator>Kline, Laurence E.</creator><creator>Partlow, William D.</creator><creator>Bies, William E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19890101</creationdate><title>Electron and chemical kinetics in methane rf glow-discharge deposition plasmas</title><author>Kline, Laurence E. ; Partlow, William D. ; Bies, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-8cb0fad76f7ae0b2bd466983113f45b9ef07c130b549cd0555e7ac04b56acabf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kline, Laurence E.</creatorcontrib><creatorcontrib>Partlow, William D.</creatorcontrib><creatorcontrib>Bies, William E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kline, Laurence E.</au><au>Partlow, William D.</au><au>Bies, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron and chemical kinetics in methane rf glow-discharge deposition plasmas</atitle><jtitle>Journal of applied physics</jtitle><date>1989-01-01</date><risdate>1989</risdate><volume>65</volume><issue>1</issue><spage>70</spage><epage>78</epage><pages>70-78</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Experimental measurements and theoretical modeling of methane deposition plasmas have led to the identification of the most likely homogeneous and heterogeneous reaction paths leading to the deposition of amorphous carbon thin films. Experimental measurements of the voltage, current waveforms, mass flow rates, and pressure are used as inputs to the model. The magnitude and flow-rate dependence of the discharge luminosity, film deposition rates, and downstream mass spectra are compared with the model predictions and used to identify the dominant reaction paths. The model uses Monte Carlo simulation of the electron kinetics to predict the electron impact dissociation and ionization rates. These rates provide input for a plug flow chemical kinetics model.</abstract><doi>10.1063/1.343378</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1989-01, Vol.65 (1), p.70-78
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_25256439
source AIP Digital Archive
title Electron and chemical kinetics in methane rf glow-discharge deposition plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20and%20chemical%20kinetics%20in%20methane%20rf%20glow-discharge%20deposition%20plasmas&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kline,%20Laurence%20E.&rft.date=1989-01-01&rft.volume=65&rft.issue=1&rft.spage=70&rft.epage=78&rft.pages=70-78&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.343378&rft_dat=%3Cproquest_cross%3E25256439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25256439&rft_id=info:pmid/&rfr_iscdi=true