Challenges of Radiology education in the era of artificial intelligence
Artificial intelligence is a branch of computer science that is generating great expectations in medicine and particularly in radiology. Artificial intelligence will change not only the way we practice our profession, but also the way we teach it and learn it. Although the advent of artificial intel...
Gespeichert in:
Veröffentlicht in: | Radiología (English ed.) 2021-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; spa |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Radiología (English ed.) |
container_volume | |
creator | Gorospe-Sarasúa, L Muñoz-Olmedo, J M Sendra-Portero, F de Luis-García, R |
description | Artificial intelligence is a branch of computer science that is generating great expectations in medicine and particularly in radiology. Artificial intelligence will change not only the way we practice our profession, but also the way we teach it and learn it. Although the advent of artificial intelligence has led some to question whether it is necessary to continue training radiologists, there seems to be a consensus in the recent scientific literature that we should continue to train radiologists and that we should teach future radiologists about artificial intelligence and how to exploit it. The acquisition of competency in artificial intelligence should start in medical school, be consolidated in residency programs, and be maintained and updated during continuing medical education. This article aims to describe some of the challenges that artificial intelligencve can pose in the different stages of training in radiology, from medical school through continuing medical education. |
doi_str_mv | 10.1016/j.rx.2020.10.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2524868464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524868464</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-dfa9d1b33da74a2f146deb3aed242a4c94eca11f02b0043550e33f8567f941143</originalsourceid><addsrcrecordid>eNo1j0FLw0AQhRdBbKm9e5IcvSTu7G42yVGKVqEgiJ7DJDubbtkkNZuA_femWN_lMbyPxzzG7oAnwEE_HpLhJxFcnM-Ec3nFlgIyGafAswVbh3Dgs3QKOZc3bCFloXUO2ZJtN3v0nrqGQtTb6AON633fnCIyU42j67vIddG4p4gGPBM4jM662qGfg5G8dw11Nd2ya4s-0PriK_b18vy5eY1379u3zdMuPoLQY2wsFgYqKQ1mCoUFpQ1VEskIJVDVhaIaASwXFedKpiknKW2e6swWCkDJFXv46z0O_fdEYSxbF-r5Deyon0IpUqFynSt9Ru8v6FS1ZMrj4FocTuX_ePkLChBahQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524868464</pqid></control><display><type>article</type><title>Challenges of Radiology education in the era of artificial intelligence</title><source>Alma/SFX Local Collection</source><creator>Gorospe-Sarasúa, L ; Muñoz-Olmedo, J M ; Sendra-Portero, F ; de Luis-García, R</creator><creatorcontrib>Gorospe-Sarasúa, L ; Muñoz-Olmedo, J M ; Sendra-Portero, F ; de Luis-García, R</creatorcontrib><description>Artificial intelligence is a branch of computer science that is generating great expectations in medicine and particularly in radiology. Artificial intelligence will change not only the way we practice our profession, but also the way we teach it and learn it. Although the advent of artificial intelligence has led some to question whether it is necessary to continue training radiologists, there seems to be a consensus in the recent scientific literature that we should continue to train radiologists and that we should teach future radiologists about artificial intelligence and how to exploit it. The acquisition of competency in artificial intelligence should start in medical school, be consolidated in residency programs, and be maintained and updated during continuing medical education. This article aims to describe some of the challenges that artificial intelligencve can pose in the different stages of training in radiology, from medical school through continuing medical education.</description><identifier>EISSN: 2173-5107</identifier><identifier>DOI: 10.1016/j.rx.2020.10.003</identifier><identifier>PMID: 33966817</identifier><language>eng ; spa</language><publisher>Spain</publisher><ispartof>Radiología (English ed.), 2021-05</ispartof><rights>Copyright © 2020 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33966817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorospe-Sarasúa, L</creatorcontrib><creatorcontrib>Muñoz-Olmedo, J M</creatorcontrib><creatorcontrib>Sendra-Portero, F</creatorcontrib><creatorcontrib>de Luis-García, R</creatorcontrib><title>Challenges of Radiology education in the era of artificial intelligence</title><title>Radiología (English ed.)</title><addtitle>Radiologia (Engl Ed)</addtitle><description>Artificial intelligence is a branch of computer science that is generating great expectations in medicine and particularly in radiology. Artificial intelligence will change not only the way we practice our profession, but also the way we teach it and learn it. Although the advent of artificial intelligence has led some to question whether it is necessary to continue training radiologists, there seems to be a consensus in the recent scientific literature that we should continue to train radiologists and that we should teach future radiologists about artificial intelligence and how to exploit it. The acquisition of competency in artificial intelligence should start in medical school, be consolidated in residency programs, and be maintained and updated during continuing medical education. This article aims to describe some of the challenges that artificial intelligencve can pose in the different stages of training in radiology, from medical school through continuing medical education.</description><issn>2173-5107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1j0FLw0AQhRdBbKm9e5IcvSTu7G42yVGKVqEgiJ7DJDubbtkkNZuA_femWN_lMbyPxzzG7oAnwEE_HpLhJxFcnM-Ec3nFlgIyGafAswVbh3Dgs3QKOZc3bCFloXUO2ZJtN3v0nrqGQtTb6AON633fnCIyU42j67vIddG4p4gGPBM4jM662qGfg5G8dw11Nd2ya4s-0PriK_b18vy5eY1379u3zdMuPoLQY2wsFgYqKQ1mCoUFpQ1VEskIJVDVhaIaASwXFedKpiknKW2e6swWCkDJFXv46z0O_fdEYSxbF-r5Deyon0IpUqFynSt9Ru8v6FS1ZMrj4FocTuX_ePkLChBahQ</recordid><startdate>20210506</startdate><enddate>20210506</enddate><creator>Gorospe-Sarasúa, L</creator><creator>Muñoz-Olmedo, J M</creator><creator>Sendra-Portero, F</creator><creator>de Luis-García, R</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20210506</creationdate><title>Challenges of Radiology education in the era of artificial intelligence</title><author>Gorospe-Sarasúa, L ; Muñoz-Olmedo, J M ; Sendra-Portero, F ; de Luis-García, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-dfa9d1b33da74a2f146deb3aed242a4c94eca11f02b0043550e33f8567f941143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorospe-Sarasúa, L</creatorcontrib><creatorcontrib>Muñoz-Olmedo, J M</creatorcontrib><creatorcontrib>Sendra-Portero, F</creatorcontrib><creatorcontrib>de Luis-García, R</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Radiología (English ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorospe-Sarasúa, L</au><au>Muñoz-Olmedo, J M</au><au>Sendra-Portero, F</au><au>de Luis-García, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges of Radiology education in the era of artificial intelligence</atitle><jtitle>Radiología (English ed.)</jtitle><addtitle>Radiologia (Engl Ed)</addtitle><date>2021-05-06</date><risdate>2021</risdate><eissn>2173-5107</eissn><abstract>Artificial intelligence is a branch of computer science that is generating great expectations in medicine and particularly in radiology. Artificial intelligence will change not only the way we practice our profession, but also the way we teach it and learn it. Although the advent of artificial intelligence has led some to question whether it is necessary to continue training radiologists, there seems to be a consensus in the recent scientific literature that we should continue to train radiologists and that we should teach future radiologists about artificial intelligence and how to exploit it. The acquisition of competency in artificial intelligence should start in medical school, be consolidated in residency programs, and be maintained and updated during continuing medical education. This article aims to describe some of the challenges that artificial intelligencve can pose in the different stages of training in radiology, from medical school through continuing medical education.</abstract><cop>Spain</cop><pmid>33966817</pmid><doi>10.1016/j.rx.2020.10.003</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2173-5107 |
ispartof | Radiología (English ed.), 2021-05 |
issn | 2173-5107 |
language | eng ; spa |
recordid | cdi_proquest_miscellaneous_2524868464 |
source | Alma/SFX Local Collection |
title | Challenges of Radiology education in the era of artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20of%20Radiology%20education%20in%20the%20era%20of%20artificial%20intelligence&rft.jtitle=Radiolog%C3%ADa%20(English%20ed.)&rft.au=Gorospe-Saras%C3%BAa,%20L&rft.date=2021-05-06&rft.eissn=2173-5107&rft_id=info:doi/10.1016/j.rx.2020.10.003&rft_dat=%3Cproquest_pubme%3E2524868464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524868464&rft_id=info:pmid/33966817&rfr_iscdi=true |