Assessing mediating effects of high‐dimensional microbiome measurements in dietary intervention studies

Habitual diet can influence health‐related outcomes directly, but such effects may also be modulated indirectly by gut microbiota. We consider randomized trials and the question to what extent the effect of diet on an outcome of interest is mediated through the gut microbiome or whether there is a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2021-10, Vol.63 (7), p.1366-1374
Hauptverfasser: Binder, Nadine, Lederer, Ann‐Kathrin, Michels, Karin B., Binder, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1374
container_issue 7
container_start_page 1366
container_title Biometrical journal
container_volume 63
creator Binder, Nadine
Lederer, Ann‐Kathrin
Michels, Karin B.
Binder, Harald
description Habitual diet can influence health‐related outcomes directly, but such effects may also be modulated indirectly by gut microbiota. We consider randomized trials and the question to what extent the effect of diet on an outcome of interest is mediated through the gut microbiome or whether there is a diet–microbiome interaction identifying subgroups of individuals who are more susceptible to specific dietary effects. The baseline microbiome by itself may be a modifier of the effects of diet on health. Yet, the high dimensionality of microbiome data requires innovative statistical approaches to identify potential mediating or moderating effects. To motivate our proposal for an appropriate analysis workflow, we consider a randomized trial that investigates the effect of a 4‐week vegan diet on the diversity of gut microbiota and branched‐chain amino acid metabolism in healthy omnivorous volunteers. To address the challenge of compositional microbiome data, we consider an adaptation of the lasso for penalized estimation of multivariable regression models with a large number of microbiotic taxa. This is plugged into a classical regression mediation effect analysis strategy. The interaction effects are obtained via an approach that can directly estimate them without having to deal with main effects. As a result we obtain signatures comprised of microbiotic taxa with potential mediating and moderating effects. Some taxa no longer show up as mediating, when taking moderating effects into account. Thus, the proposed analysis strategy allows to identify specific mediating effects, while avoiding potential erroneous conclusions, where moderating effects might have believed to be mediating effects.
doi_str_mv 10.1002/bimj.201900373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2524361203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579540473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4082-1a3de8173e7eb7bc756f0c93fd118a03b9b57d0562b3878c9191fe98397272c3</originalsourceid><addsrcrecordid>eNqFkbtOxDAQRS0EguXRUqJINDRZxp4kjktY8VgEoqGP8piAV3ksmQS0HZ_AN_IlOFrYgobK4_GZK9-5QhxLmEoAdZ7ZejFVIA0AatwSExkq6QeA0baYACr0MQ70nthnXgCAgUDtij1EE7mbngh7wUzMtnn2aips2o8VlSXlPXtt6b3Y55evj8_C1tSwbZu08mqbd21m25rcSMpDR-7N0bbxCkt92q1c2VP35rpuwuN-cH0-FDtlWjEd_ZwH4un66ml2698_3sxnF_d-HkCsfJliQbHUSJoyneU6jErIDZaFlHEKmJks1AWEkcow1nFupJElmRiNVlrleCDO1rLLrn0diPuktpxTVaUNtQMnKlQBRlIBOvT0D7poh85ZHCltwgACPVLTNeVcM3dUJsvO1s5lIiEZM0jGDJJNBm7g5Ed2yNxON_jv0h0QrIF3W9HqH7nkcv5wp9yv8RvW_pQW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579540473</pqid></control><display><type>article</type><title>Assessing mediating effects of high‐dimensional microbiome measurements in dietary intervention studies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Binder, Nadine ; Lederer, Ann‐Kathrin ; Michels, Karin B. ; Binder, Harald</creator><creatorcontrib>Binder, Nadine ; Lederer, Ann‐Kathrin ; Michels, Karin B. ; Binder, Harald</creatorcontrib><description>Habitual diet can influence health‐related outcomes directly, but such effects may also be modulated indirectly by gut microbiota. We consider randomized trials and the question to what extent the effect of diet on an outcome of interest is mediated through the gut microbiome or whether there is a diet–microbiome interaction identifying subgroups of individuals who are more susceptible to specific dietary effects. The baseline microbiome by itself may be a modifier of the effects of diet on health. Yet, the high dimensionality of microbiome data requires innovative statistical approaches to identify potential mediating or moderating effects. To motivate our proposal for an appropriate analysis workflow, we consider a randomized trial that investigates the effect of a 4‐week vegan diet on the diversity of gut microbiota and branched‐chain amino acid metabolism in healthy omnivorous volunteers. To address the challenge of compositional microbiome data, we consider an adaptation of the lasso for penalized estimation of multivariable regression models with a large number of microbiotic taxa. This is plugged into a classical regression mediation effect analysis strategy. The interaction effects are obtained via an approach that can directly estimate them without having to deal with main effects. As a result we obtain signatures comprised of microbiotic taxa with potential mediating and moderating effects. Some taxa no longer show up as mediating, when taking moderating effects into account. Thus, the proposed analysis strategy allows to identify specific mediating effects, while avoiding potential erroneous conclusions, where moderating effects might have believed to be mediating effects.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.201900373</identifier><identifier>PMID: 33960007</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Amino acids ; Chain branching ; compositional data ; Diet ; Digestive system ; gut microbiome ; high‐dimensional regression ; Intestinal microflora ; mediation analysis ; Microbiomes ; Microbiota ; moderation ; Regression analysis ; Regression models ; Statistical analysis ; Subgroups ; Vegan ; Veganism ; Vegetarian diet ; Workflow</subject><ispartof>Biometrical journal, 2021-10, Vol.63 (7), p.1366-1374</ispartof><rights>2021 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2021 The Authors. Biometrical Journal published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4082-1a3de8173e7eb7bc756f0c93fd118a03b9b57d0562b3878c9191fe98397272c3</citedby><cites>FETCH-LOGICAL-c4082-1a3de8173e7eb7bc756f0c93fd118a03b9b57d0562b3878c9191fe98397272c3</cites><orcidid>0000-0002-5666-8662 ; 0000-0001-7984-9530 ; 0000-0001-5137-5505 ; 0000-0002-1919-4154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.201900373$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.201900373$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33960007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Binder, Nadine</creatorcontrib><creatorcontrib>Lederer, Ann‐Kathrin</creatorcontrib><creatorcontrib>Michels, Karin B.</creatorcontrib><creatorcontrib>Binder, Harald</creatorcontrib><title>Assessing mediating effects of high‐dimensional microbiome measurements in dietary intervention studies</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Habitual diet can influence health‐related outcomes directly, but such effects may also be modulated indirectly by gut microbiota. We consider randomized trials and the question to what extent the effect of diet on an outcome of interest is mediated through the gut microbiome or whether there is a diet–microbiome interaction identifying subgroups of individuals who are more susceptible to specific dietary effects. The baseline microbiome by itself may be a modifier of the effects of diet on health. Yet, the high dimensionality of microbiome data requires innovative statistical approaches to identify potential mediating or moderating effects. To motivate our proposal for an appropriate analysis workflow, we consider a randomized trial that investigates the effect of a 4‐week vegan diet on the diversity of gut microbiota and branched‐chain amino acid metabolism in healthy omnivorous volunteers. To address the challenge of compositional microbiome data, we consider an adaptation of the lasso for penalized estimation of multivariable regression models with a large number of microbiotic taxa. This is plugged into a classical regression mediation effect analysis strategy. The interaction effects are obtained via an approach that can directly estimate them without having to deal with main effects. As a result we obtain signatures comprised of microbiotic taxa with potential mediating and moderating effects. Some taxa no longer show up as mediating, when taking moderating effects into account. Thus, the proposed analysis strategy allows to identify specific mediating effects, while avoiding potential erroneous conclusions, where moderating effects might have believed to be mediating effects.</description><subject>Amino acids</subject><subject>Chain branching</subject><subject>compositional data</subject><subject>Diet</subject><subject>Digestive system</subject><subject>gut microbiome</subject><subject>high‐dimensional regression</subject><subject>Intestinal microflora</subject><subject>mediation analysis</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>moderation</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Subgroups</subject><subject>Vegan</subject><subject>Veganism</subject><subject>Vegetarian diet</subject><subject>Workflow</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkbtOxDAQRS0EguXRUqJINDRZxp4kjktY8VgEoqGP8piAV3ksmQS0HZ_AN_IlOFrYgobK4_GZK9-5QhxLmEoAdZ7ZejFVIA0AatwSExkq6QeA0baYACr0MQ70nthnXgCAgUDtij1EE7mbngh7wUzMtnn2aips2o8VlSXlPXtt6b3Y55evj8_C1tSwbZu08mqbd21m25rcSMpDR-7N0bbxCkt92q1c2VP35rpuwuN-cH0-FDtlWjEd_ZwH4un66ml2698_3sxnF_d-HkCsfJliQbHUSJoyneU6jErIDZaFlHEKmJks1AWEkcow1nFupJElmRiNVlrleCDO1rLLrn0diPuktpxTVaUNtQMnKlQBRlIBOvT0D7poh85ZHCltwgACPVLTNeVcM3dUJsvO1s5lIiEZM0jGDJJNBm7g5Ed2yNxON_jv0h0QrIF3W9HqH7nkcv5wp9yv8RvW_pQW</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Binder, Nadine</creator><creator>Lederer, Ann‐Kathrin</creator><creator>Michels, Karin B.</creator><creator>Binder, Harald</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5666-8662</orcidid><orcidid>https://orcid.org/0000-0001-7984-9530</orcidid><orcidid>https://orcid.org/0000-0001-5137-5505</orcidid><orcidid>https://orcid.org/0000-0002-1919-4154</orcidid></search><sort><creationdate>202110</creationdate><title>Assessing mediating effects of high‐dimensional microbiome measurements in dietary intervention studies</title><author>Binder, Nadine ; Lederer, Ann‐Kathrin ; Michels, Karin B. ; Binder, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4082-1a3de8173e7eb7bc756f0c93fd118a03b9b57d0562b3878c9191fe98397272c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Chain branching</topic><topic>compositional data</topic><topic>Diet</topic><topic>Digestive system</topic><topic>gut microbiome</topic><topic>high‐dimensional regression</topic><topic>Intestinal microflora</topic><topic>mediation analysis</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>moderation</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Subgroups</topic><topic>Vegan</topic><topic>Veganism</topic><topic>Vegetarian diet</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binder, Nadine</creatorcontrib><creatorcontrib>Lederer, Ann‐Kathrin</creatorcontrib><creatorcontrib>Michels, Karin B.</creatorcontrib><creatorcontrib>Binder, Harald</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binder, Nadine</au><au>Lederer, Ann‐Kathrin</au><au>Michels, Karin B.</au><au>Binder, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing mediating effects of high‐dimensional microbiome measurements in dietary intervention studies</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2021-10</date><risdate>2021</risdate><volume>63</volume><issue>7</issue><spage>1366</spage><epage>1374</epage><pages>1366-1374</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Habitual diet can influence health‐related outcomes directly, but such effects may also be modulated indirectly by gut microbiota. We consider randomized trials and the question to what extent the effect of diet on an outcome of interest is mediated through the gut microbiome or whether there is a diet–microbiome interaction identifying subgroups of individuals who are more susceptible to specific dietary effects. The baseline microbiome by itself may be a modifier of the effects of diet on health. Yet, the high dimensionality of microbiome data requires innovative statistical approaches to identify potential mediating or moderating effects. To motivate our proposal for an appropriate analysis workflow, we consider a randomized trial that investigates the effect of a 4‐week vegan diet on the diversity of gut microbiota and branched‐chain amino acid metabolism in healthy omnivorous volunteers. To address the challenge of compositional microbiome data, we consider an adaptation of the lasso for penalized estimation of multivariable regression models with a large number of microbiotic taxa. This is plugged into a classical regression mediation effect analysis strategy. The interaction effects are obtained via an approach that can directly estimate them without having to deal with main effects. As a result we obtain signatures comprised of microbiotic taxa with potential mediating and moderating effects. Some taxa no longer show up as mediating, when taking moderating effects into account. Thus, the proposed analysis strategy allows to identify specific mediating effects, while avoiding potential erroneous conclusions, where moderating effects might have believed to be mediating effects.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>33960007</pmid><doi>10.1002/bimj.201900373</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5666-8662</orcidid><orcidid>https://orcid.org/0000-0001-7984-9530</orcidid><orcidid>https://orcid.org/0000-0001-5137-5505</orcidid><orcidid>https://orcid.org/0000-0002-1919-4154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2021-10, Vol.63 (7), p.1366-1374
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_2524361203
source Wiley Online Library Journals Frontfile Complete
subjects Amino acids
Chain branching
compositional data
Diet
Digestive system
gut microbiome
high‐dimensional regression
Intestinal microflora
mediation analysis
Microbiomes
Microbiota
moderation
Regression analysis
Regression models
Statistical analysis
Subgroups
Vegan
Veganism
Vegetarian diet
Workflow
title Assessing mediating effects of high‐dimensional microbiome measurements in dietary intervention studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20mediating%20effects%20of%20high%E2%80%90dimensional%20microbiome%20measurements%20in%20dietary%20intervention%20studies&rft.jtitle=Biometrical%20journal&rft.au=Binder,%20Nadine&rft.date=2021-10&rft.volume=63&rft.issue=7&rft.spage=1366&rft.epage=1374&rft.pages=1366-1374&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.201900373&rft_dat=%3Cproquest_cross%3E2579540473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579540473&rft_id=info:pmid/33960007&rfr_iscdi=true