Unknown System Dynamics Estimator for Active Vehicle Suspension Control Systems With Time-Varying Delay

This article proposes a novel control method for vehicle active suspension systems in the presence of time-varying input delay and unknown nonlinearities. An unknown system dynamics estimator (USDE), which employs first-order low-pass filter operations and has only one tuning parameter, is construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-08, Vol.52 (8), p.8504-8514
Hauptverfasser: Huang, Yingbo, Wu, Jiande, Na, Jing, Han, Shichang, Gao, Guanbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8514
container_issue 8
container_start_page 8504
container_title IEEE transactions on cybernetics
container_volume 52
creator Huang, Yingbo
Wu, Jiande
Na, Jing
Han, Shichang
Gao, Guanbin
description This article proposes a novel control method for vehicle active suspension systems in the presence of time-varying input delay and unknown nonlinearities. An unknown system dynamics estimator (USDE), which employs first-order low-pass filter operations and has only one tuning parameter, is constructed to deal with unknown nonlinearities. With this USDE, the widely used function approximators (e.g., neural networks and fuzzy-logic systems) are not needed, and the intermediate variables and observer used in the traditional estimators are not required. This estimator has a reduced computational burden, trivial parameter tuning and guaranteed convergence. Moreover, a predictor-based compensation strategy is developed to handle the time-varying input delay. Finally, we combine the suggested USDE and predictor to design a feedback controller to attenuate the vibrations of vehicle body and retain the required suspension performances. Theoretical analysis is carried out via the Lyapunov-Krasovkii functional to prove the stability of the closed-loop system. Simulation results based on professional vehicle simulation software Carsim are provided to show the efficiency of the proposed control scheme.
doi_str_mv 10.1109/TCYB.2021.3063225
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2524360864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9426589</ieee_id><sourcerecordid>2691874183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c219d6eeb7c1b97022513aa2b59c5d1d67556d57b1b5103c6b3fbdd61b2f47993</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EolXpD0BIyBIXLln8EdvxsWw_QKrEodsiTlbsTFqXxF7sBJR_j1e77IGRrBnZzzsaz4vQW0pWlBL9abP-8XnFCKMrTiRnTLxAp4zKpmJMiZfHWqoTdJ7zMynRlCvdvEYnnGtJhWKn6PE-_AzxT8B3S55gxJdLaEfvMr7Kkx_bKSbcl3PhJv8b8AM8eTcAvpvzFkL2MeB1DFOKw0Gf8Xc_PeGNH6F6aNPiwyO-hKFd3qBXfTtkOD_kM3R_fbVZf6luv918XV_cVo7Xeqoco7qTAFY5arUi5VuUty2zQjvR0U4qIWQnlKVWUMKdtLy3XSepZX2ttOZn6OO-7zbFXzPkyYw-OxiGNkCcs2GC1VySRtYF_fAf-hznFMp0hklNG1XThheK7imXYs4JerNNZTFpMZSYnRFmZ4TZGWEORhTN-0Pn2Y7QHRX_1l6Ad3vAA8DxWddMikbzv2k9jAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691874183</pqid></control><display><type>article</type><title>Unknown System Dynamics Estimator for Active Vehicle Suspension Control Systems With Time-Varying Delay</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Yingbo ; Wu, Jiande ; Na, Jing ; Han, Shichang ; Gao, Guanbin</creator><creatorcontrib>Huang, Yingbo ; Wu, Jiande ; Na, Jing ; Han, Shichang ; Gao, Guanbin</creatorcontrib><description>This article proposes a novel control method for vehicle active suspension systems in the presence of time-varying input delay and unknown nonlinearities. An unknown system dynamics estimator (USDE), which employs first-order low-pass filter operations and has only one tuning parameter, is constructed to deal with unknown nonlinearities. With this USDE, the widely used function approximators (e.g., neural networks and fuzzy-logic systems) are not needed, and the intermediate variables and observer used in the traditional estimators are not required. This estimator has a reduced computational burden, trivial parameter tuning and guaranteed convergence. Moreover, a predictor-based compensation strategy is developed to handle the time-varying input delay. Finally, we combine the suggested USDE and predictor to design a feedback controller to attenuate the vibrations of vehicle body and retain the required suspension performances. Theoretical analysis is carried out via the Lyapunov-Krasovkii functional to prove the stability of the closed-loop system. Simulation results based on professional vehicle simulation software Carsim are provided to show the efficiency of the proposed control scheme.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3063225</identifier><identifier>PMID: 33961572</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active control ; Active suspension control ; Control methods ; Control systems ; Control systems design ; Delay ; Delays ; Feedback control ; Fuzzy logic ; Fuzzy systems ; Low pass filters ; Neural networks ; Nonlinearity ; Parameters ; Suspension systems ; Suspensions (mechanical systems) ; System dynamics ; Time varying control ; time-varying input delay ; Time-varying systems ; Tuning ; unknown system dynamics estimator (USDE) ; Vehicle dynamics ; vehicle suspension systems</subject><ispartof>IEEE transactions on cybernetics, 2022-08, Vol.52 (8), p.8504-8514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c219d6eeb7c1b97022513aa2b59c5d1d67556d57b1b5103c6b3fbdd61b2f47993</citedby><cites>FETCH-LOGICAL-c349t-c219d6eeb7c1b97022513aa2b59c5d1d67556d57b1b5103c6b3fbdd61b2f47993</cites><orcidid>0000-0002-3067-1580 ; 0000-0001-6857-0315 ; 0000-0003-2780-4925 ; 0000-0003-1348-0421 ; 0000-0001-9390-2369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9426589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9426589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33961572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yingbo</creatorcontrib><creatorcontrib>Wu, Jiande</creatorcontrib><creatorcontrib>Na, Jing</creatorcontrib><creatorcontrib>Han, Shichang</creatorcontrib><creatorcontrib>Gao, Guanbin</creatorcontrib><title>Unknown System Dynamics Estimator for Active Vehicle Suspension Control Systems With Time-Varying Delay</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This article proposes a novel control method for vehicle active suspension systems in the presence of time-varying input delay and unknown nonlinearities. An unknown system dynamics estimator (USDE), which employs first-order low-pass filter operations and has only one tuning parameter, is constructed to deal with unknown nonlinearities. With this USDE, the widely used function approximators (e.g., neural networks and fuzzy-logic systems) are not needed, and the intermediate variables and observer used in the traditional estimators are not required. This estimator has a reduced computational burden, trivial parameter tuning and guaranteed convergence. Moreover, a predictor-based compensation strategy is developed to handle the time-varying input delay. Finally, we combine the suggested USDE and predictor to design a feedback controller to attenuate the vibrations of vehicle body and retain the required suspension performances. Theoretical analysis is carried out via the Lyapunov-Krasovkii functional to prove the stability of the closed-loop system. Simulation results based on professional vehicle simulation software Carsim are provided to show the efficiency of the proposed control scheme.</description><subject>Active control</subject><subject>Active suspension control</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Delay</subject><subject>Delays</subject><subject>Feedback control</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Low pass filters</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Parameters</subject><subject>Suspension systems</subject><subject>Suspensions (mechanical systems)</subject><subject>System dynamics</subject><subject>Time varying control</subject><subject>time-varying input delay</subject><subject>Time-varying systems</subject><subject>Tuning</subject><subject>unknown system dynamics estimator (USDE)</subject><subject>Vehicle dynamics</subject><subject>vehicle suspension systems</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1v1DAQhi0EolXpD0BIyBIXLln8EdvxsWw_QKrEodsiTlbsTFqXxF7sBJR_j1e77IGRrBnZzzsaz4vQW0pWlBL9abP-8XnFCKMrTiRnTLxAp4zKpmJMiZfHWqoTdJ7zMynRlCvdvEYnnGtJhWKn6PE-_AzxT8B3S55gxJdLaEfvMr7Kkx_bKSbcl3PhJv8b8AM8eTcAvpvzFkL2MeB1DFOKw0Gf8Xc_PeGNH6F6aNPiwyO-hKFd3qBXfTtkOD_kM3R_fbVZf6luv918XV_cVo7Xeqoco7qTAFY5arUi5VuUty2zQjvR0U4qIWQnlKVWUMKdtLy3XSepZX2ttOZn6OO-7zbFXzPkyYw-OxiGNkCcs2GC1VySRtYF_fAf-hznFMp0hklNG1XThheK7imXYs4JerNNZTFpMZSYnRFmZ4TZGWEORhTN-0Pn2Y7QHRX_1l6Ad3vAA8DxWddMikbzv2k9jAk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huang, Yingbo</creator><creator>Wu, Jiande</creator><creator>Na, Jing</creator><creator>Han, Shichang</creator><creator>Gao, Guanbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3067-1580</orcidid><orcidid>https://orcid.org/0000-0001-6857-0315</orcidid><orcidid>https://orcid.org/0000-0003-2780-4925</orcidid><orcidid>https://orcid.org/0000-0003-1348-0421</orcidid><orcidid>https://orcid.org/0000-0001-9390-2369</orcidid></search><sort><creationdate>20220801</creationdate><title>Unknown System Dynamics Estimator for Active Vehicle Suspension Control Systems With Time-Varying Delay</title><author>Huang, Yingbo ; Wu, Jiande ; Na, Jing ; Han, Shichang ; Gao, Guanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c219d6eeb7c1b97022513aa2b59c5d1d67556d57b1b5103c6b3fbdd61b2f47993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Active suspension control</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Delay</topic><topic>Delays</topic><topic>Feedback control</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Low pass filters</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Parameters</topic><topic>Suspension systems</topic><topic>Suspensions (mechanical systems)</topic><topic>System dynamics</topic><topic>Time varying control</topic><topic>time-varying input delay</topic><topic>Time-varying systems</topic><topic>Tuning</topic><topic>unknown system dynamics estimator (USDE)</topic><topic>Vehicle dynamics</topic><topic>vehicle suspension systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yingbo</creatorcontrib><creatorcontrib>Wu, Jiande</creatorcontrib><creatorcontrib>Na, Jing</creatorcontrib><creatorcontrib>Han, Shichang</creatorcontrib><creatorcontrib>Gao, Guanbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Yingbo</au><au>Wu, Jiande</au><au>Na, Jing</au><au>Han, Shichang</au><au>Gao, Guanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unknown System Dynamics Estimator for Active Vehicle Suspension Control Systems With Time-Varying Delay</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>52</volume><issue>8</issue><spage>8504</spage><epage>8514</epage><pages>8504-8514</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This article proposes a novel control method for vehicle active suspension systems in the presence of time-varying input delay and unknown nonlinearities. An unknown system dynamics estimator (USDE), which employs first-order low-pass filter operations and has only one tuning parameter, is constructed to deal with unknown nonlinearities. With this USDE, the widely used function approximators (e.g., neural networks and fuzzy-logic systems) are not needed, and the intermediate variables and observer used in the traditional estimators are not required. This estimator has a reduced computational burden, trivial parameter tuning and guaranteed convergence. Moreover, a predictor-based compensation strategy is developed to handle the time-varying input delay. Finally, we combine the suggested USDE and predictor to design a feedback controller to attenuate the vibrations of vehicle body and retain the required suspension performances. Theoretical analysis is carried out via the Lyapunov-Krasovkii functional to prove the stability of the closed-loop system. Simulation results based on professional vehicle simulation software Carsim are provided to show the efficiency of the proposed control scheme.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33961572</pmid><doi>10.1109/TCYB.2021.3063225</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3067-1580</orcidid><orcidid>https://orcid.org/0000-0001-6857-0315</orcidid><orcidid>https://orcid.org/0000-0003-2780-4925</orcidid><orcidid>https://orcid.org/0000-0003-1348-0421</orcidid><orcidid>https://orcid.org/0000-0001-9390-2369</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-08, Vol.52 (8), p.8504-8514
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_2524360864
source IEEE Electronic Library (IEL)
subjects Active control
Active suspension control
Control methods
Control systems
Control systems design
Delay
Delays
Feedback control
Fuzzy logic
Fuzzy systems
Low pass filters
Neural networks
Nonlinearity
Parameters
Suspension systems
Suspensions (mechanical systems)
System dynamics
Time varying control
time-varying input delay
Time-varying systems
Tuning
unknown system dynamics estimator (USDE)
Vehicle dynamics
vehicle suspension systems
title Unknown System Dynamics Estimator for Active Vehicle Suspension Control Systems With Time-Varying Delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unknown%20System%20Dynamics%20Estimator%20for%20Active%20Vehicle%20Suspension%20Control%20Systems%20With%20Time-Varying%20Delay&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Huang,%20Yingbo&rft.date=2022-08-01&rft.volume=52&rft.issue=8&rft.spage=8504&rft.epage=8514&rft.pages=8504-8514&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3063225&rft_dat=%3Cproquest_RIE%3E2691874183%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691874183&rft_id=info:pmid/33961572&rft_ieee_id=9426589&rfr_iscdi=true