Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability
Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also in...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-05, Vol.372 (6542), p.618-622 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 622 |
---|---|
container_issue | 6542 |
container_start_page | 618 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 372 |
creator | Dai, Zhenghong Yadavalli, Srinivas K Chen, Min Abbaspourtamijani, Ali Qi, Yue Padture, Nitin P |
description | Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability-tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness. |
doi_str_mv | 10.1126/science.abf5602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2524353293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524353293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-892b7e56ae3d2675ebb759f04b9c4fdce85100c27bfa1a14ec494daf96098f5a3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EoqUwsyFLLCxpHTtO4hFVfFSqxAJzsJ1z6-LExU5A_e9J1cLAcje83717eghdp2SapjSfRW2h1TCVyvCc0BM0TongiaCEnaIxISxPSlLwEbqIcUPIoAl2jkaMCV5mRTZG74u2g2CkttLhzverNbS2XeFv261xBGcSGSM0ykGNG996J3cQIoZ2LYe_EW8h-K_4YTvAcRAD1uAcDuCsVNbZbneJzox0Ea6Oe4LeHh9e58_J8uVpMb9fJppR3iWloKoAnktgNc0LDkoVXBiSKaEzU2soeUqIpoUyMpVpBjoTWS2NyIkoDZdsgu4OvtvgP3uIXdXYuA8jW_B9rCinGeOMCjagt__Qje9DO6TbU7QYhsgHanagdPAxBjDVNthGhl2VkmpffnUsvzqWP1zcHH171UD9x_-2zX4AjRyEQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522725296</pqid></control><display><type>article</type><title>Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability</title><source>American Association for the Advancement of Science</source><creator>Dai, Zhenghong ; Yadavalli, Srinivas K ; Chen, Min ; Abbaspourtamijani, Ali ; Qi, Yue ; Padture, Nitin P</creator><creatorcontrib>Dai, Zhenghong ; Yadavalli, Srinivas K ; Chen, Min ; Abbaspourtamijani, Ali ; Qi, Yue ; Padture, Nitin P</creatorcontrib><description>Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability-tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abf5602</identifier><identifier>PMID: 33958474</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Adhesion ; Damage accumulation ; Efficiency ; Electron transport ; Energy conversion efficiency ; Free energy ; Heat of formation ; Hydroxyl groups ; Interface stability ; Interfaces ; Iodine ; Maximum power tracking ; Monolayers ; Perovskites ; Photovoltaic cells ; Reliability ; Self-assembled monolayers ; Self-assembly ; Solar cells ; Thin films ; Toughness</subject><ispartof>Science (American Association for the Advancement of Science), 2021-05, Vol.372 (6542), p.618-622</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-892b7e56ae3d2675ebb759f04b9c4fdce85100c27bfa1a14ec494daf96098f5a3</citedby><cites>FETCH-LOGICAL-c325t-892b7e56ae3d2675ebb759f04b9c4fdce85100c27bfa1a14ec494daf96098f5a3</cites><orcidid>0000-0003-4867-0487 ; 0000-0001-6622-8559 ; 0000-0002-7964-1868 ; 0000-0001-5331-1193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33958474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Zhenghong</creatorcontrib><creatorcontrib>Yadavalli, Srinivas K</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Abbaspourtamijani, Ali</creatorcontrib><creatorcontrib>Qi, Yue</creatorcontrib><creatorcontrib>Padture, Nitin P</creatorcontrib><title>Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability-tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness.</description><subject>Adhesion</subject><subject>Damage accumulation</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Hydroxyl groups</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Iodine</subject><subject>Maximum power tracking</subject><subject>Monolayers</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Reliability</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Toughness</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAQxS0EoqUwsyFLLCxpHTtO4hFVfFSqxAJzsJ1z6-LExU5A_e9J1cLAcje83717eghdp2SapjSfRW2h1TCVyvCc0BM0TongiaCEnaIxISxPSlLwEbqIcUPIoAl2jkaMCV5mRTZG74u2g2CkttLhzverNbS2XeFv261xBGcSGSM0ykGNG996J3cQIoZ2LYe_EW8h-K_4YTvAcRAD1uAcDuCsVNbZbneJzox0Ea6Oe4LeHh9e58_J8uVpMb9fJppR3iWloKoAnktgNc0LDkoVXBiSKaEzU2soeUqIpoUyMpVpBjoTWS2NyIkoDZdsgu4OvtvgP3uIXdXYuA8jW_B9rCinGeOMCjagt__Qje9DO6TbU7QYhsgHanagdPAxBjDVNthGhl2VkmpffnUsvzqWP1zcHH171UD9x_-2zX4AjRyEQg</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Dai, Zhenghong</creator><creator>Yadavalli, Srinivas K</creator><creator>Chen, Min</creator><creator>Abbaspourtamijani, Ali</creator><creator>Qi, Yue</creator><creator>Padture, Nitin P</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4867-0487</orcidid><orcidid>https://orcid.org/0000-0001-6622-8559</orcidid><orcidid>https://orcid.org/0000-0002-7964-1868</orcidid><orcidid>https://orcid.org/0000-0001-5331-1193</orcidid></search><sort><creationdate>20210507</creationdate><title>Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability</title><author>Dai, Zhenghong ; Yadavalli, Srinivas K ; Chen, Min ; Abbaspourtamijani, Ali ; Qi, Yue ; Padture, Nitin P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-892b7e56ae3d2675ebb759f04b9c4fdce85100c27bfa1a14ec494daf96098f5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion</topic><topic>Damage accumulation</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Hydroxyl groups</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Iodine</topic><topic>Maximum power tracking</topic><topic>Monolayers</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Reliability</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhenghong</creatorcontrib><creatorcontrib>Yadavalli, Srinivas K</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Abbaspourtamijani, Ali</creatorcontrib><creatorcontrib>Qi, Yue</creatorcontrib><creatorcontrib>Padture, Nitin P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhenghong</au><au>Yadavalli, Srinivas K</au><au>Chen, Min</au><au>Abbaspourtamijani, Ali</au><au>Qi, Yue</au><au>Padture, Nitin P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>372</volume><issue>6542</issue><spage>618</spage><epage>622</epage><pages>618-622</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability-tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33958474</pmid><doi>10.1126/science.abf5602</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4867-0487</orcidid><orcidid>https://orcid.org/0000-0001-6622-8559</orcidid><orcidid>https://orcid.org/0000-0002-7964-1868</orcidid><orcidid>https://orcid.org/0000-0001-5331-1193</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-05, Vol.372 (6542), p.618-622 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2524353293 |
source | American Association for the Advancement of Science |
subjects | Adhesion Damage accumulation Efficiency Electron transport Energy conversion efficiency Free energy Heat of formation Hydroxyl groups Interface stability Interfaces Iodine Maximum power tracking Monolayers Perovskites Photovoltaic cells Reliability Self-assembled monolayers Self-assembly Solar cells Thin films Toughness |
title | Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20toughening%20with%20self-assembled%20monolayers%20enhances%20perovskite%20solar%20cell%20reliability&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dai,%20Zhenghong&rft.date=2021-05-07&rft.volume=372&rft.issue=6542&rft.spage=618&rft.epage=622&rft.pages=618-622&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abf5602&rft_dat=%3Cproquest_cross%3E2524353293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522725296&rft_id=info:pmid/33958474&rfr_iscdi=true |