(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration
* The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized. * Monolayer and bilayer surface coating structures are described. * Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr. Over the past few decades, engineered, (super)paramagnetic nano...
Gespeichert in:
Veröffentlicht in: | Frontiers of environmental science & engineering 2020-10, Vol.14 (5), p.77-77, Article 77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 5 |
container_start_page | 77 |
container_title | Frontiers of environmental science & engineering |
container_volume | 14 |
creator | Li, Wenlu Fortner, John D. |
description | * The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized. * Monolayer and bilayer surface coating structures are described. * Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr.
Over the past few decades, engineered, (super)paramagnetic nanoparticles have drawn extensive research attention for a broad range of applications based on their tunable size and shape, surface chemistries, and magnetic properties. This review summaries our recent work on the synthesis, surface modification, and environmental application of (super)paramagnetic nanoparticles. By utilizing high-temperature thermo-decomposition methods, first, we have broadly demonstrated the synthesis of highly monodispersed, (super)paramagnetic nanoparticles, via the pyrolysis of metal carboxylate salts in an organic phase. Highly uniform magnetic nanoparticles with various size, composition, and shape can be precisely tuned by controlled reaction parameters, such as the initial precursors, heating rate, final reaction temperature, reaction time, and the additives. These materials can be further rendered water stable via functionalization with surface mono/bi-layer coating structure using a series of tunable ionic/non-ionic surfactants. Finally, we have demonstrated platform potential of these materials for heavy metal ions sensing, sorption, and separation from the aqueous phase. |
doi_str_mv | 10.1007/s11783-020-1256-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2524320995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524320995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-ac0a9dfe03745b30bc54a0987474830dc65f0a86d82e6e7948079073a0158c953</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxQexYKn9AN0F3NTFaP5MJhl3UqwKBRda6C7cZu68lzKTjLl5ln57044ouGg2uTf5nZNwT9OcCf5OcG7ekxDGqpZL3gqp-9a8aI4lH3Qrpbh5-bfm4lVzSnTH67K2E1YdN_fn3w8r5rcrZFhgF7EEzyLEVA9qOSMxILbOUKaUF7ZAwRxgJlZbhvFXyCkuGAvMDNZ1Dh5KSJE-sMucFkYPseyRArGS2IhLvSn5iXjdHE3VBk__7CfN9eWnHxdf2qtvn79efLxqvRpsacFzGMYJuTKdvlX81usO-GBNZzqr-Oh7PXGw_Wgl9miGznIzcKOAC239oNVJc775rjn9PCAVtwTyOM8QMR3ISS07VefzhL75D71Lhxzr75wcRH2y10pUSmyUz4ko4-TWHBbID05w95iG29JwNQ33mIYzVSM3DVU27jD_c35OZDfRPuz2mHFcMxK5qQ68BMzPSX8DVB6gRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918746531</pqid></control><display><type>article</type><title>(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Li, Wenlu ; Fortner, John D.</creator><creatorcontrib>Li, Wenlu ; Fortner, John D.</creatorcontrib><description>* The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized. * Monolayer and bilayer surface coating structures are described. * Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr.
Over the past few decades, engineered, (super)paramagnetic nanoparticles have drawn extensive research attention for a broad range of applications based on their tunable size and shape, surface chemistries, and magnetic properties. This review summaries our recent work on the synthesis, surface modification, and environmental application of (super)paramagnetic nanoparticles. By utilizing high-temperature thermo-decomposition methods, first, we have broadly demonstrated the synthesis of highly monodispersed, (super)paramagnetic nanoparticles, via the pyrolysis of metal carboxylate salts in an organic phase. Highly uniform magnetic nanoparticles with various size, composition, and shape can be precisely tuned by controlled reaction parameters, such as the initial precursors, heating rate, final reaction temperature, reaction time, and the additives. These materials can be further rendered water stable via functionalization with surface mono/bi-layer coating structure using a series of tunable ionic/non-ionic surfactants. Finally, we have demonstrated platform potential of these materials for heavy metal ions sensing, sorption, and separation from the aqueous phase.</description><identifier>ISSN: 2095-2201</identifier><identifier>EISSN: 2095-221X</identifier><identifier>DOI: 10.1007/s11783-020-1256-7</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Additives ; Bilayers ; Earth and Environmental Science ; Environment ; Environmental sensing ; Heating rate ; Heavy metal ion sorption ; Heavy metals ; Magnetic properties ; magnetism ; Metal ions ; Nanoparticles ; Pyrolysis ; Review Article ; sorption ; Special Issue—Accounts of Aquatic Chemistry and Technology Research ; Superparamagnetic nanoparticles ; Surface functionalization ; Synthesis ; temperature</subject><ispartof>Frontiers of environmental science & engineering, 2020-10, Vol.14 (5), p.77-77, Article 77</ispartof><rights>Copyright reserved, 2020, Higher Education Press</rights><rights>Higher Education Press 2020</rights><rights>Higher Education Press 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-ac0a9dfe03745b30bc54a0987474830dc65f0a86d82e6e7948079073a0158c953</citedby><cites>FETCH-LOGICAL-c398t-ac0a9dfe03745b30bc54a0987474830dc65f0a86d82e6e7948079073a0158c953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11783-020-1256-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918746531?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21375,27911,27912,33731,33732,41475,42544,43792,51306,64370,64372,64374,72224</link.rule.ids></links><search><creatorcontrib>Li, Wenlu</creatorcontrib><creatorcontrib>Fortner, John D.</creatorcontrib><title>(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration</title><title>Frontiers of environmental science & engineering</title><addtitle>Front. Environ. Sci. Eng</addtitle><description>* The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized. * Monolayer and bilayer surface coating structures are described. * Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr.
Over the past few decades, engineered, (super)paramagnetic nanoparticles have drawn extensive research attention for a broad range of applications based on their tunable size and shape, surface chemistries, and magnetic properties. This review summaries our recent work on the synthesis, surface modification, and environmental application of (super)paramagnetic nanoparticles. By utilizing high-temperature thermo-decomposition methods, first, we have broadly demonstrated the synthesis of highly monodispersed, (super)paramagnetic nanoparticles, via the pyrolysis of metal carboxylate salts in an organic phase. Highly uniform magnetic nanoparticles with various size, composition, and shape can be precisely tuned by controlled reaction parameters, such as the initial precursors, heating rate, final reaction temperature, reaction time, and the additives. These materials can be further rendered water stable via functionalization with surface mono/bi-layer coating structure using a series of tunable ionic/non-ionic surfactants. Finally, we have demonstrated platform potential of these materials for heavy metal ions sensing, sorption, and separation from the aqueous phase.</description><subject>Additives</subject><subject>Bilayers</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental sensing</subject><subject>Heating rate</subject><subject>Heavy metal ion sorption</subject><subject>Heavy metals</subject><subject>Magnetic properties</subject><subject>magnetism</subject><subject>Metal ions</subject><subject>Nanoparticles</subject><subject>Pyrolysis</subject><subject>Review Article</subject><subject>sorption</subject><subject>Special Issue—Accounts of Aquatic Chemistry and Technology Research</subject><subject>Superparamagnetic nanoparticles</subject><subject>Surface functionalization</subject><subject>Synthesis</subject><subject>temperature</subject><issn>2095-2201</issn><issn>2095-221X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rFTEUxQexYKn9AN0F3NTFaP5MJhl3UqwKBRda6C7cZu68lzKTjLl5ln57044ouGg2uTf5nZNwT9OcCf5OcG7ekxDGqpZL3gqp-9a8aI4lH3Qrpbh5-bfm4lVzSnTH67K2E1YdN_fn3w8r5rcrZFhgF7EEzyLEVA9qOSMxILbOUKaUF7ZAwRxgJlZbhvFXyCkuGAvMDNZ1Dh5KSJE-sMucFkYPseyRArGS2IhLvSn5iXjdHE3VBk__7CfN9eWnHxdf2qtvn79efLxqvRpsacFzGMYJuTKdvlX81usO-GBNZzqr-Oh7PXGw_Wgl9miGznIzcKOAC239oNVJc775rjn9PCAVtwTyOM8QMR3ISS07VefzhL75D71Lhxzr75wcRH2y10pUSmyUz4ko4-TWHBbID05w95iG29JwNQ33mIYzVSM3DVU27jD_c35OZDfRPuz2mHFcMxK5qQ68BMzPSX8DVB6gRA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Li, Wenlu</creator><creator>Fortner, John D.</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20201001</creationdate><title>(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration</title><author>Li, Wenlu ; Fortner, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-ac0a9dfe03745b30bc54a0987474830dc65f0a86d82e6e7948079073a0158c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Bilayers</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental sensing</topic><topic>Heating rate</topic><topic>Heavy metal ion sorption</topic><topic>Heavy metals</topic><topic>Magnetic properties</topic><topic>magnetism</topic><topic>Metal ions</topic><topic>Nanoparticles</topic><topic>Pyrolysis</topic><topic>Review Article</topic><topic>sorption</topic><topic>Special Issue—Accounts of Aquatic Chemistry and Technology Research</topic><topic>Superparamagnetic nanoparticles</topic><topic>Surface functionalization</topic><topic>Synthesis</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenlu</creatorcontrib><creatorcontrib>Fortner, John D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Frontiers of environmental science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenlu</au><au>Fortner, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration</atitle><jtitle>Frontiers of environmental science & engineering</jtitle><stitle>Front. Environ. Sci. Eng</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>77</spage><epage>77</epage><pages>77-77</pages><artnum>77</artnum><issn>2095-2201</issn><eissn>2095-221X</eissn><abstract>* The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized. * Monolayer and bilayer surface coating structures are described. * Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr.
Over the past few decades, engineered, (super)paramagnetic nanoparticles have drawn extensive research attention for a broad range of applications based on their tunable size and shape, surface chemistries, and magnetic properties. This review summaries our recent work on the synthesis, surface modification, and environmental application of (super)paramagnetic nanoparticles. By utilizing high-temperature thermo-decomposition methods, first, we have broadly demonstrated the synthesis of highly monodispersed, (super)paramagnetic nanoparticles, via the pyrolysis of metal carboxylate salts in an organic phase. Highly uniform magnetic nanoparticles with various size, composition, and shape can be precisely tuned by controlled reaction parameters, such as the initial precursors, heating rate, final reaction temperature, reaction time, and the additives. These materials can be further rendered water stable via functionalization with surface mono/bi-layer coating structure using a series of tunable ionic/non-ionic surfactants. Finally, we have demonstrated platform potential of these materials for heavy metal ions sensing, sorption, and separation from the aqueous phase.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11783-020-1256-7</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2201 |
ispartof | Frontiers of environmental science & engineering, 2020-10, Vol.14 (5), p.77-77, Article 77 |
issn | 2095-2201 2095-221X |
language | eng |
recordid | cdi_proquest_miscellaneous_2524320995 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Additives Bilayers Earth and Environmental Science Environment Environmental sensing Heating rate Heavy metal ion sorption Heavy metals Magnetic properties magnetism Metal ions Nanoparticles Pyrolysis Review Article sorption Special Issue—Accounts of Aquatic Chemistry and Technology Research Superparamagnetic nanoparticles Surface functionalization Synthesis temperature |
title | (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(Super)paramagnetic%20nanoparticles%20as%20platform%20materials%20for%20environmental%20applications:%20From%20synthesis%20to%20demonstration&rft.jtitle=Frontiers%20of%20environmental%20science%20&%20engineering&rft.au=Li,%20Wenlu&rft.date=2020-10-01&rft.volume=14&rft.issue=5&rft.spage=77&rft.epage=77&rft.pages=77-77&rft.artnum=77&rft.issn=2095-2201&rft.eissn=2095-221X&rft_id=info:doi/10.1007/s11783-020-1256-7&rft_dat=%3Cproquest_cross%3E2524320995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918746531&rft_id=info:pmid/&rfr_iscdi=true |