Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics

•SAC catalysts were prepared using corncob which is an agricultural waste.•It is the first time that SAC catalysts were used for bio-jet fuel production.•Lower sulfonation temperature promoted higher sulfonic acid density.•SAC catalysts significantly enhanced bio-oil quality.•Bio-jet aromatics and C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2020-02, Vol.297, p.122411-122411, Article 122411
Hauptverfasser: Mateo, Wendy, Lei, Hanwu, Villota, Elmar, Qian, Moriko, Zhao, Yunfeng, Huo, Erguang, Zhang, Qingfa, Lin, Xiaona, Wang, Chenxi, Huang, Zhiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122411
container_issue
container_start_page 122411
container_title Bioresource technology
container_volume 297
creator Mateo, Wendy
Lei, Hanwu
Villota, Elmar
Qian, Moriko
Zhao, Yunfeng
Huo, Erguang
Zhang, Qingfa
Lin, Xiaona
Wang, Chenxi
Huang, Zhiyang
description •SAC catalysts were prepared using corncob which is an agricultural waste.•It is the first time that SAC catalysts were used for bio-jet fuel production.•Lower sulfonation temperature promoted higher sulfonic acid density.•SAC catalysts significantly enhanced bio-oil quality.•Bio-jet aromatics and C9-C16 alkanes were the main compounds in bio-oil. Sulfonated activated carbon-based catalysts were prepared by microwaved-assisted carbonization of phosphoric acid activated corncob followed by sulfonation using concentrated sulfuric acid. Sulfonation at different temperatures and times resulted in varied SO3H group density of the SAC catalysts. Sulfonation temperature showed a significant effect on the introduction of SO3H on the AC precursor while time had minor role. The SAC catalysts were characterized by means of N2 sorption analysis (specific surface area, pore-volume, average pore width), FTIR spectroscopy, SEM imaging, and sulfur analysis. The impact of catalysts SO3H density on the product distribution and bio-oil composition from the catalytic co-pyrolysis of Douglas fir and LDPE was evaluated. The highest bio-jet fuels (aromatics and C9-16 alkanes) obtained was 97.51% using the SAC catalyst sulfonated at 100 °C for 5 h. Results showed that SAC has great potential as catalyst in the co-pyrolysis of biomass and plastics for the production of jet-fuel range hydrocarbons.
doi_str_mv 10.1016/j.biortech.2019.122411
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2524283597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852419316414</els_id><sourcerecordid>2318726143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c51220d3a582d19e24e9145dac80fc02ce3b5743371112cc631584a27652da503</originalsourceid><addsrcrecordid>eNqFUcuO1DAQtBCIHQZ-YZUjlwxuO3aSG2jFS1qJA3C2PO2OxqMkHmxn0fAD_DaezS7XPXVLVdXV3cXYNfAdcNDvjru9DzETHnaCQ78DIRqAZ2wDXStr0bf6OdvwXvO6U6K5Yq9SOnLOJbTiJbsqRbeNhA37-_085wMlnyo7uwoPNlrMFP0fm32YqzBUaRmHMNtMriqQv7vv0MZ9gW2RlT7b8ZxyNYRYlbXqI5V-obE6xeAWvB80xDBdwMmm1eq3TZmq01iKx_SavRjsmOjNQ92yn58-_rj5Ut9--_z15sNtjU2nc42qHMqdtKoTDnoSDfXQKGex4wNygST3qlwmWwAQiFqC6horWq2Es4rLLXu7zi2r_VooZTP5hDSOdqawJCPKt0QnVd8-TZXl10JDcdsyvVIxhpQiDeYU_WTj2QA3l7zM0TzmZS55mTWvIrx-8Fj2E7n_sseACuH9SqDylDtP0ST0NCM5HwmzccE_5fEPdIOrPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318726143</pqid></control><display><type>article</type><title>Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mateo, Wendy ; Lei, Hanwu ; Villota, Elmar ; Qian, Moriko ; Zhao, Yunfeng ; Huo, Erguang ; Zhang, Qingfa ; Lin, Xiaona ; Wang, Chenxi ; Huang, Zhiyang</creator><creatorcontrib>Mateo, Wendy ; Lei, Hanwu ; Villota, Elmar ; Qian, Moriko ; Zhao, Yunfeng ; Huo, Erguang ; Zhang, Qingfa ; Lin, Xiaona ; Wang, Chenxi ; Huang, Zhiyang</creatorcontrib><description>•SAC catalysts were prepared using corncob which is an agricultural waste.•It is the first time that SAC catalysts were used for bio-jet fuel production.•Lower sulfonation temperature promoted higher sulfonic acid density.•SAC catalysts significantly enhanced bio-oil quality.•Bio-jet aromatics and C9-C16 alkanes were the main compounds in bio-oil. Sulfonated activated carbon-based catalysts were prepared by microwaved-assisted carbonization of phosphoric acid activated corncob followed by sulfonation using concentrated sulfuric acid. Sulfonation at different temperatures and times resulted in varied SO3H group density of the SAC catalysts. Sulfonation temperature showed a significant effect on the introduction of SO3H on the AC precursor while time had minor role. The SAC catalysts were characterized by means of N2 sorption analysis (specific surface area, pore-volume, average pore width), FTIR spectroscopy, SEM imaging, and sulfur analysis. The impact of catalysts SO3H density on the product distribution and bio-oil composition from the catalytic co-pyrolysis of Douglas fir and LDPE was evaluated. The highest bio-jet fuels (aromatics and C9-16 alkanes) obtained was 97.51% using the SAC catalyst sulfonated at 100 °C for 5 h. Results showed that SAC has great potential as catalyst in the co-pyrolysis of biomass and plastics for the production of jet-fuel range hydrocarbons.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2019.122411</identifier><identifier>PMID: 31767431</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>activated carbon ; aromatic compounds ; Bio-jet fuels ; Biofuels ; Biomass ; carbonization ; Catalysis ; catalysts ; Charcoal ; Co-pyrolysis ; corn cobs ; Fourier transform infrared spectroscopy ; fuel production ; Hot Temperature ; Hydrocarbons ; Low-density polyethylene ; phosphoric acid ; Plastics ; Pseudotsuga menziesii ; pyrolysis ; sorption ; Sulfonated carbon catalyst ; sulfur ; sulfuric acid ; surface area ; technology ; temperature</subject><ispartof>Bioresource technology, 2020-02, Vol.297, p.122411-122411, Article 122411</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c51220d3a582d19e24e9145dac80fc02ce3b5743371112cc631584a27652da503</citedby><cites>FETCH-LOGICAL-c486t-c51220d3a582d19e24e9145dac80fc02ce3b5743371112cc631584a27652da503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852419316414$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31767431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mateo, Wendy</creatorcontrib><creatorcontrib>Lei, Hanwu</creatorcontrib><creatorcontrib>Villota, Elmar</creatorcontrib><creatorcontrib>Qian, Moriko</creatorcontrib><creatorcontrib>Zhao, Yunfeng</creatorcontrib><creatorcontrib>Huo, Erguang</creatorcontrib><creatorcontrib>Zhang, Qingfa</creatorcontrib><creatorcontrib>Lin, Xiaona</creatorcontrib><creatorcontrib>Wang, Chenxi</creatorcontrib><creatorcontrib>Huang, Zhiyang</creatorcontrib><title>Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•SAC catalysts were prepared using corncob which is an agricultural waste.•It is the first time that SAC catalysts were used for bio-jet fuel production.•Lower sulfonation temperature promoted higher sulfonic acid density.•SAC catalysts significantly enhanced bio-oil quality.•Bio-jet aromatics and C9-C16 alkanes were the main compounds in bio-oil. Sulfonated activated carbon-based catalysts were prepared by microwaved-assisted carbonization of phosphoric acid activated corncob followed by sulfonation using concentrated sulfuric acid. Sulfonation at different temperatures and times resulted in varied SO3H group density of the SAC catalysts. Sulfonation temperature showed a significant effect on the introduction of SO3H on the AC precursor while time had minor role. The SAC catalysts were characterized by means of N2 sorption analysis (specific surface area, pore-volume, average pore width), FTIR spectroscopy, SEM imaging, and sulfur analysis. The impact of catalysts SO3H density on the product distribution and bio-oil composition from the catalytic co-pyrolysis of Douglas fir and LDPE was evaluated. The highest bio-jet fuels (aromatics and C9-16 alkanes) obtained was 97.51% using the SAC catalyst sulfonated at 100 °C for 5 h. Results showed that SAC has great potential as catalyst in the co-pyrolysis of biomass and plastics for the production of jet-fuel range hydrocarbons.</description><subject>activated carbon</subject><subject>aromatic compounds</subject><subject>Bio-jet fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>carbonization</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>Charcoal</subject><subject>Co-pyrolysis</subject><subject>corn cobs</subject><subject>Fourier transform infrared spectroscopy</subject><subject>fuel production</subject><subject>Hot Temperature</subject><subject>Hydrocarbons</subject><subject>Low-density polyethylene</subject><subject>phosphoric acid</subject><subject>Plastics</subject><subject>Pseudotsuga menziesii</subject><subject>pyrolysis</subject><subject>sorption</subject><subject>Sulfonated carbon catalyst</subject><subject>sulfur</subject><subject>sulfuric acid</subject><subject>surface area</subject><subject>technology</subject><subject>temperature</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcuO1DAQtBCIHQZ-YZUjlwxuO3aSG2jFS1qJA3C2PO2OxqMkHmxn0fAD_DaezS7XPXVLVdXV3cXYNfAdcNDvjru9DzETHnaCQ78DIRqAZ2wDXStr0bf6OdvwXvO6U6K5Yq9SOnLOJbTiJbsqRbeNhA37-_085wMlnyo7uwoPNlrMFP0fm32YqzBUaRmHMNtMriqQv7vv0MZ9gW2RlT7b8ZxyNYRYlbXqI5V-obE6xeAWvB80xDBdwMmm1eq3TZmq01iKx_SavRjsmOjNQ92yn58-_rj5Ut9--_z15sNtjU2nc42qHMqdtKoTDnoSDfXQKGex4wNygST3qlwmWwAQiFqC6horWq2Es4rLLXu7zi2r_VooZTP5hDSOdqawJCPKt0QnVd8-TZXl10JDcdsyvVIxhpQiDeYU_WTj2QA3l7zM0TzmZS55mTWvIrx-8Fj2E7n_sseACuH9SqDylDtP0ST0NCM5HwmzccE_5fEPdIOrPw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Mateo, Wendy</creator><creator>Lei, Hanwu</creator><creator>Villota, Elmar</creator><creator>Qian, Moriko</creator><creator>Zhao, Yunfeng</creator><creator>Huo, Erguang</creator><creator>Zhang, Qingfa</creator><creator>Lin, Xiaona</creator><creator>Wang, Chenxi</creator><creator>Huang, Zhiyang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20200201</creationdate><title>Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics</title><author>Mateo, Wendy ; Lei, Hanwu ; Villota, Elmar ; Qian, Moriko ; Zhao, Yunfeng ; Huo, Erguang ; Zhang, Qingfa ; Lin, Xiaona ; Wang, Chenxi ; Huang, Zhiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c51220d3a582d19e24e9145dac80fc02ce3b5743371112cc631584a27652da503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>activated carbon</topic><topic>aromatic compounds</topic><topic>Bio-jet fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>carbonization</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>Charcoal</topic><topic>Co-pyrolysis</topic><topic>corn cobs</topic><topic>Fourier transform infrared spectroscopy</topic><topic>fuel production</topic><topic>Hot Temperature</topic><topic>Hydrocarbons</topic><topic>Low-density polyethylene</topic><topic>phosphoric acid</topic><topic>Plastics</topic><topic>Pseudotsuga menziesii</topic><topic>pyrolysis</topic><topic>sorption</topic><topic>Sulfonated carbon catalyst</topic><topic>sulfur</topic><topic>sulfuric acid</topic><topic>surface area</topic><topic>technology</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mateo, Wendy</creatorcontrib><creatorcontrib>Lei, Hanwu</creatorcontrib><creatorcontrib>Villota, Elmar</creatorcontrib><creatorcontrib>Qian, Moriko</creatorcontrib><creatorcontrib>Zhao, Yunfeng</creatorcontrib><creatorcontrib>Huo, Erguang</creatorcontrib><creatorcontrib>Zhang, Qingfa</creatorcontrib><creatorcontrib>Lin, Xiaona</creatorcontrib><creatorcontrib>Wang, Chenxi</creatorcontrib><creatorcontrib>Huang, Zhiyang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mateo, Wendy</au><au>Lei, Hanwu</au><au>Villota, Elmar</au><au>Qian, Moriko</au><au>Zhao, Yunfeng</au><au>Huo, Erguang</au><au>Zhang, Qingfa</au><au>Lin, Xiaona</au><au>Wang, Chenxi</au><au>Huang, Zhiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>297</volume><spage>122411</spage><epage>122411</epage><pages>122411-122411</pages><artnum>122411</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•SAC catalysts were prepared using corncob which is an agricultural waste.•It is the first time that SAC catalysts were used for bio-jet fuel production.•Lower sulfonation temperature promoted higher sulfonic acid density.•SAC catalysts significantly enhanced bio-oil quality.•Bio-jet aromatics and C9-C16 alkanes were the main compounds in bio-oil. Sulfonated activated carbon-based catalysts were prepared by microwaved-assisted carbonization of phosphoric acid activated corncob followed by sulfonation using concentrated sulfuric acid. Sulfonation at different temperatures and times resulted in varied SO3H group density of the SAC catalysts. Sulfonation temperature showed a significant effect on the introduction of SO3H on the AC precursor while time had minor role. The SAC catalysts were characterized by means of N2 sorption analysis (specific surface area, pore-volume, average pore width), FTIR spectroscopy, SEM imaging, and sulfur analysis. The impact of catalysts SO3H density on the product distribution and bio-oil composition from the catalytic co-pyrolysis of Douglas fir and LDPE was evaluated. The highest bio-jet fuels (aromatics and C9-16 alkanes) obtained was 97.51% using the SAC catalyst sulfonated at 100 °C for 5 h. Results showed that SAC has great potential as catalyst in the co-pyrolysis of biomass and plastics for the production of jet-fuel range hydrocarbons.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31767431</pmid><doi>10.1016/j.biortech.2019.122411</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2020-02, Vol.297, p.122411-122411, Article 122411
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2524283597
source MEDLINE; Elsevier ScienceDirect Journals
subjects activated carbon
aromatic compounds
Bio-jet fuels
Biofuels
Biomass
carbonization
Catalysis
catalysts
Charcoal
Co-pyrolysis
corn cobs
Fourier transform infrared spectroscopy
fuel production
Hot Temperature
Hydrocarbons
Low-density polyethylene
phosphoric acid
Plastics
Pseudotsuga menziesii
pyrolysis
sorption
Sulfonated carbon catalyst
sulfur
sulfuric acid
surface area
technology
temperature
title Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20sulfonated%20activated%20carbon%20as%20a%20catalyst%20for%20bio-jet%20fuel%20production%20from%20biomass%20and%20waste%20plastics&rft.jtitle=Bioresource%20technology&rft.au=Mateo,%20Wendy&rft.date=2020-02-01&rft.volume=297&rft.spage=122411&rft.epage=122411&rft.pages=122411-122411&rft.artnum=122411&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2019.122411&rft_dat=%3Cproquest_cross%3E2318726143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318726143&rft_id=info:pmid/31767431&rft_els_id=S0960852419316414&rfr_iscdi=true