Givens rotation based least squares lattice and related algorithms

The author presents a general and systematic approach for deriving new LS (least squares) estimation algorithms that are based solely on Givens rotations. In particular, this approach is used to derive efficient Givens-rotation-based LS lattice algorithms-the Givens-lattice algorithms. By exploiting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1991-07, Vol.39 (7), p.1541-1551
1. Verfasser: Ling, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1551
container_issue 7
container_start_page 1541
container_title IEEE transactions on signal processing
container_volume 39
creator Ling, F.
description The author presents a general and systematic approach for deriving new LS (least squares) estimation algorithms that are based solely on Givens rotations. In particular, this approach is used to derive efficient Givens-rotation-based LS lattice algorithms-the Givens-lattice algorithms. By exploiting the relationship between the Givens algorithms and the recursive modified Gram-Schmidt algorithm, it is shown that the time and order update of any order-recursive LS estimation algorithm can be realized by employing only Givens rotations. Applying this general conclusion to LS estimation of time-series signals results in the Givens-lattice algorithms. Two Givens-lattice algorithms, one with square roots and the other without, are presented. It is shown that the Givens-lattice algorithms are computationally more efficient than the fast QR algorithm of Cioffi (1987). The derivation of other Givens rotation-based LS estimation algorithms and their systolic array implementations are discussed.< >
doi_str_mv 10.1109/78.134393
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25227939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>134393</ieee_id><sourcerecordid>25227939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-95f0d2104ecba95ac0220ca1fc443188d99f5973b7a63f890ec514b00c68598b3</originalsourceid><addsrcrecordid>eNqF0LFLxDAUBvAgCp6ng6tTJsGh50uTNMmoh57CgYuCW0jTV4302rskJ_jfW6ng6PTe4_34ho-QcwYLxsBcK71gXHDDD8iMGcEKEKo6HHeQvJBavR6Tk5Q-AJgQppqR21X4xD7ROGSXw9DT2iVsaIcuZZp2excx0c7lHDxS1zc04niNwnVvQwz5fZNOyVHruoRnv3NOXu7vnpcPxfpp9bi8WReeg86FkS00JQOBvnZGOg9lCd6x1gvBmdaNMa00itfKVbzVBtBLJmoAX2lpdM3n5HLK3cZht8eU7SYkj13nehz2yZaagxmT_oeyLJUZO5qTqwn6OKQUsbXbGDYuflkG9qdOq7Sd6hztxWQDIv656fkNNxBvFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25227939</pqid></control><display><type>article</type><title>Givens rotation based least squares lattice and related algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Ling, F.</creator><creatorcontrib>Ling, F.</creatorcontrib><description>The author presents a general and systematic approach for deriving new LS (least squares) estimation algorithms that are based solely on Givens rotations. In particular, this approach is used to derive efficient Givens-rotation-based LS lattice algorithms-the Givens-lattice algorithms. By exploiting the relationship between the Givens algorithms and the recursive modified Gram-Schmidt algorithm, it is shown that the time and order update of any order-recursive LS estimation algorithm can be realized by employing only Givens rotations. Applying this general conclusion to LS estimation of time-series signals results in the Givens-lattice algorithms. Two Givens-lattice algorithms, one with square roots and the other without, are presented. It is shown that the Givens-lattice algorithms are computationally more efficient than the fast QR algorithm of Cioffi (1987). The derivation of other Givens rotation-based LS estimation algorithms and their systolic array implementations are discussed.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.134393</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Estimation error ; Filtering algorithms ; Lattices ; Least squares approximation ; Least squares methods ; Numerical stability ; Recursive estimation ; Signal processing algorithms ; Systolic arrays</subject><ispartof>IEEE transactions on signal processing, 1991-07, Vol.39 (7), p.1541-1551</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-95f0d2104ecba95ac0220ca1fc443188d99f5973b7a63f890ec514b00c68598b3</citedby><cites>FETCH-LOGICAL-c308t-95f0d2104ecba95ac0220ca1fc443188d99f5973b7a63f890ec514b00c68598b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/134393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/134393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ling, F.</creatorcontrib><title>Givens rotation based least squares lattice and related algorithms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The author presents a general and systematic approach for deriving new LS (least squares) estimation algorithms that are based solely on Givens rotations. In particular, this approach is used to derive efficient Givens-rotation-based LS lattice algorithms-the Givens-lattice algorithms. By exploiting the relationship between the Givens algorithms and the recursive modified Gram-Schmidt algorithm, it is shown that the time and order update of any order-recursive LS estimation algorithm can be realized by employing only Givens rotations. Applying this general conclusion to LS estimation of time-series signals results in the Givens-lattice algorithms. Two Givens-lattice algorithms, one with square roots and the other without, are presented. It is shown that the Givens-lattice algorithms are computationally more efficient than the fast QR algorithm of Cioffi (1987). The derivation of other Givens rotation-based LS estimation algorithms and their systolic array implementations are discussed.&lt; &gt;</description><subject>Adaptive filters</subject><subject>Estimation error</subject><subject>Filtering algorithms</subject><subject>Lattices</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Numerical stability</subject><subject>Recursive estimation</subject><subject>Signal processing algorithms</subject><subject>Systolic arrays</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqF0LFLxDAUBvAgCp6ng6tTJsGh50uTNMmoh57CgYuCW0jTV4302rskJ_jfW6ng6PTe4_34ho-QcwYLxsBcK71gXHDDD8iMGcEKEKo6HHeQvJBavR6Tk5Q-AJgQppqR21X4xD7ROGSXw9DT2iVsaIcuZZp2excx0c7lHDxS1zc04niNwnVvQwz5fZNOyVHruoRnv3NOXu7vnpcPxfpp9bi8WReeg86FkS00JQOBvnZGOg9lCd6x1gvBmdaNMa00itfKVbzVBtBLJmoAX2lpdM3n5HLK3cZht8eU7SYkj13nehz2yZaagxmT_oeyLJUZO5qTqwn6OKQUsbXbGDYuflkG9qdOq7Sd6hztxWQDIv656fkNNxBvFQ</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Ling, F.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19910701</creationdate><title>Givens rotation based least squares lattice and related algorithms</title><author>Ling, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-95f0d2104ecba95ac0220ca1fc443188d99f5973b7a63f890ec514b00c68598b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Adaptive filters</topic><topic>Estimation error</topic><topic>Filtering algorithms</topic><topic>Lattices</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Numerical stability</topic><topic>Recursive estimation</topic><topic>Signal processing algorithms</topic><topic>Systolic arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ling, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Givens rotation based least squares lattice and related algorithms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1991-07-01</date><risdate>1991</risdate><volume>39</volume><issue>7</issue><spage>1541</spage><epage>1551</epage><pages>1541-1551</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The author presents a general and systematic approach for deriving new LS (least squares) estimation algorithms that are based solely on Givens rotations. In particular, this approach is used to derive efficient Givens-rotation-based LS lattice algorithms-the Givens-lattice algorithms. By exploiting the relationship between the Givens algorithms and the recursive modified Gram-Schmidt algorithm, it is shown that the time and order update of any order-recursive LS estimation algorithm can be realized by employing only Givens rotations. Applying this general conclusion to LS estimation of time-series signals results in the Givens-lattice algorithms. Two Givens-lattice algorithms, one with square roots and the other without, are presented. It is shown that the Givens-lattice algorithms are computationally more efficient than the fast QR algorithm of Cioffi (1987). The derivation of other Givens rotation-based LS estimation algorithms and their systolic array implementations are discussed.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/78.134393</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1991-07, Vol.39 (7), p.1541-1551
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_25227939
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Estimation error
Filtering algorithms
Lattices
Least squares approximation
Least squares methods
Numerical stability
Recursive estimation
Signal processing algorithms
Systolic arrays
title Givens rotation based least squares lattice and related algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Givens%20rotation%20based%20least%20squares%20lattice%20and%20related%20algorithms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ling,%20F.&rft.date=1991-07-01&rft.volume=39&rft.issue=7&rft.spage=1541&rft.epage=1551&rft.pages=1541-1551&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.134393&rft_dat=%3Cproquest_RIE%3E25227939%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25227939&rft_id=info:pmid/&rft_ieee_id=134393&rfr_iscdi=true