Laser-Driven Growth of Semiconductor Nanowires from Colloidal Nanocrystals
Semiconductor nanowire production through vapor- and solution-based processes has propelled nanowire systems toward a wide range of technological applications. Although vapor-based nanowire syntheses enable precise control over nanowire composition and phase, they typically employ batch processes wi...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-05, Vol.15 (5), p.8653-8662 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiconductor nanowire production through vapor- and solution-based processes has propelled nanowire systems toward a wide range of technological applications. Although vapor-based nanowire syntheses enable precise control over nanowire composition and phase, they typically employ batch processes with specialized pressure management systems, limiting throughput. Solution-based nanowire growth processes have improved scalability but can require even more extensive pressure and temperature management systems. Here, we demonstrate a solution-based nanowire growth process that utilizes the large Young–Laplace interfacial surface pressures and collective heating effects of colloidal metal nanocrystals under irradiation to drive nanowire growth photothermally. Laser irradiation of a solution containing metal nanocrystals and semiconductor precursors facilitates rapid heating, precursor decomposition, and nanowire growth on a benchtop in simple glassware under standard conditions, potentially enabling a range of solution-based experiments including in-line combinatorial identification of optimized reaction parameters, in situ measurements, and the production of nanowires with complex compositions. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c00683 |