Fast, adaptive summation of point forces in the two-dimensional Poisson equation
Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple p...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 1989-07, Vol.83 (1), p.126-147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 126 |
container_title | Journal of computational physics |
container_volume | 83 |
creator | van Dommelen, Leon Rundensteiner, Elke A. |
description | Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver. |
doi_str_mv | 10.1016/0021-9991(89)90225-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25222797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999189902258</els_id><sourcerecordid>25222797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</originalsourceid><addsrcrecordid>eNp9kMFKHTEUhkNpobfWN3CRjVKhoyeZSSbZCCLVFoS60HWImYSmzCTXnFylb2-uV-zO1Vn833845yPkgMEJAyZPATjrtNbsm9LHGjgXnfpAVgw0dHxk8iNZvSGfyRfEvwCgxKBW5ObSYv1O7WTXNT56iptlsTXmRHOg6xxTpSEX55HGROsfT-tT7qa4-IQNsjO9yRGx4f5h89L7Sj4FO6Pff5175O7yx-3Fz-7699Wvi_PrzvVK1m4YwLlRSH4fgma96Mee9yBdENppNUzq3oKToxtACBf4pIWdIPQgJj5K6X2_R452e9clP2w8VrNEdH6ebfJ5g4YLzvmoxwYOO9CVjFh8MOsSF1v-GQZmq89s3ZitG6O0edFnVKsdvu636Owcik0u4v-uHoRuTzTuYMcli9akWrBlSgNIBmPf4rNd7JuLx-iLQRd9cn6Kxbtqphzfv-MZ1UGL-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25222797</pqid></control><display><type>article</type><title>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</title><source>Access via ScienceDirect (Elsevier)</source><source>NASA Technical Reports Server</source><creator>van Dommelen, Leon ; Rundensteiner, Elke A.</creator><creatorcontrib>van Dommelen, Leon ; Rundensteiner, Elke A.</creatorcontrib><description>Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(89)90225-8</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fluid Mechanics And Heat Transfer ; Mathematical methods in physics ; Numerical approximation and analysis ; Physics</subject><ispartof>Journal of computational physics, 1989-07, Vol.83 (1), p.126-147</ispartof><rights>1989 Academic Press, Inc.</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</citedby><cites>FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(89)90225-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19459440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van Dommelen, Leon</creatorcontrib><creatorcontrib>Rundensteiner, Elke A.</creatorcontrib><title>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</title><title>Journal of computational physics</title><description>Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver.</description><subject>Exact sciences and technology</subject><subject>Fluid Mechanics And Heat Transfer</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kMFKHTEUhkNpobfWN3CRjVKhoyeZSSbZCCLVFoS60HWImYSmzCTXnFylb2-uV-zO1Vn833845yPkgMEJAyZPATjrtNbsm9LHGjgXnfpAVgw0dHxk8iNZvSGfyRfEvwCgxKBW5ObSYv1O7WTXNT56iptlsTXmRHOg6xxTpSEX55HGROsfT-tT7qa4-IQNsjO9yRGx4f5h89L7Sj4FO6Pff5175O7yx-3Fz-7699Wvi_PrzvVK1m4YwLlRSH4fgma96Mee9yBdENppNUzq3oKToxtACBf4pIWdIPQgJj5K6X2_R452e9clP2w8VrNEdH6ebfJ5g4YLzvmoxwYOO9CVjFh8MOsSF1v-GQZmq89s3ZitG6O0edFnVKsdvu636Owcik0u4v-uHoRuTzTuYMcli9akWrBlSgNIBmPf4rNd7JuLx-iLQRd9cn6Kxbtqphzfv-MZ1UGL-w</recordid><startdate>19890701</startdate><enddate>19890701</enddate><creator>van Dommelen, Leon</creator><creator>Rundensteiner, Elke A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19890701</creationdate><title>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</title><author>van Dommelen, Leon ; Rundensteiner, Elke A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Exact sciences and technology</topic><topic>Fluid Mechanics And Heat Transfer</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Dommelen, Leon</creatorcontrib><creatorcontrib>Rundensteiner, Elke A.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Dommelen, Leon</au><au>Rundensteiner, Elke A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</atitle><jtitle>Journal of computational physics</jtitle><date>1989-07-01</date><risdate>1989</risdate><volume>83</volume><issue>1</issue><spage>126</spage><epage>147</epage><pages>126-147</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(89)90225-8</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 1989-07, Vol.83 (1), p.126-147 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_25222797 |
source | Access via ScienceDirect (Elsevier); NASA Technical Reports Server |
subjects | Exact sciences and technology Fluid Mechanics And Heat Transfer Mathematical methods in physics Numerical approximation and analysis Physics |
title | Fast, adaptive summation of point forces in the two-dimensional Poisson equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast,%20adaptive%20summation%20of%20point%20forces%20in%20the%20two-dimensional%20Poisson%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=van%20Dommelen,%20Leon&rft.date=1989-07-01&rft.volume=83&rft.issue=1&rft.spage=126&rft.epage=147&rft.pages=126-147&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(89)90225-8&rft_dat=%3Cproquest_cross%3E25222797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25222797&rft_id=info:pmid/&rft_els_id=0021999189902258&rfr_iscdi=true |