Fast, adaptive summation of point forces in the two-dimensional Poisson equation

Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1989-07, Vol.83 (1), p.126-147
Hauptverfasser: van Dommelen, Leon, Rundensteiner, Elke A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 126
container_title Journal of computational physics
container_volume 83
creator van Dommelen, Leon
Rundensteiner, Elke A.
description Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver.
doi_str_mv 10.1016/0021-9991(89)90225-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25222797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999189902258</els_id><sourcerecordid>25222797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</originalsourceid><addsrcrecordid>eNp9kMFKHTEUhkNpobfWN3CRjVKhoyeZSSbZCCLVFoS60HWImYSmzCTXnFylb2-uV-zO1Vn833845yPkgMEJAyZPATjrtNbsm9LHGjgXnfpAVgw0dHxk8iNZvSGfyRfEvwCgxKBW5ObSYv1O7WTXNT56iptlsTXmRHOg6xxTpSEX55HGROsfT-tT7qa4-IQNsjO9yRGx4f5h89L7Sj4FO6Pff5175O7yx-3Fz-7699Wvi_PrzvVK1m4YwLlRSH4fgma96Mee9yBdENppNUzq3oKToxtACBf4pIWdIPQgJj5K6X2_R452e9clP2w8VrNEdH6ebfJ5g4YLzvmoxwYOO9CVjFh8MOsSF1v-GQZmq89s3ZitG6O0edFnVKsdvu636Owcik0u4v-uHoRuTzTuYMcli9akWrBlSgNIBmPf4rNd7JuLx-iLQRd9cn6Kxbtqphzfv-MZ1UGL-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25222797</pqid></control><display><type>article</type><title>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</title><source>Access via ScienceDirect (Elsevier)</source><source>NASA Technical Reports Server</source><creator>van Dommelen, Leon ; Rundensteiner, Elke A.</creator><creatorcontrib>van Dommelen, Leon ; Rundensteiner, Elke A.</creatorcontrib><description>Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(89)90225-8</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Inc</publisher><subject>Exact sciences and technology ; Fluid Mechanics And Heat Transfer ; Mathematical methods in physics ; Numerical approximation and analysis ; Physics</subject><ispartof>Journal of computational physics, 1989-07, Vol.83 (1), p.126-147</ispartof><rights>1989 Academic Press, Inc.</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</citedby><cites>FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(89)90225-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19459440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van Dommelen, Leon</creatorcontrib><creatorcontrib>Rundensteiner, Elke A.</creatorcontrib><title>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</title><title>Journal of computational physics</title><description>Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver.</description><subject>Exact sciences and technology</subject><subject>Fluid Mechanics And Heat Transfer</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kMFKHTEUhkNpobfWN3CRjVKhoyeZSSbZCCLVFoS60HWImYSmzCTXnFylb2-uV-zO1Vn833845yPkgMEJAyZPATjrtNbsm9LHGjgXnfpAVgw0dHxk8iNZvSGfyRfEvwCgxKBW5ObSYv1O7WTXNT56iptlsTXmRHOg6xxTpSEX55HGROsfT-tT7qa4-IQNsjO9yRGx4f5h89L7Sj4FO6Pff5175O7yx-3Fz-7699Wvi_PrzvVK1m4YwLlRSH4fgma96Mee9yBdENppNUzq3oKToxtACBf4pIWdIPQgJj5K6X2_R452e9clP2w8VrNEdH6ebfJ5g4YLzvmoxwYOO9CVjFh8MOsSF1v-GQZmq89s3ZitG6O0edFnVKsdvu636Owcik0u4v-uHoRuTzTuYMcli9akWrBlSgNIBmPf4rNd7JuLx-iLQRd9cn6Kxbtqphzfv-MZ1UGL-w</recordid><startdate>19890701</startdate><enddate>19890701</enddate><creator>van Dommelen, Leon</creator><creator>Rundensteiner, Elke A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19890701</creationdate><title>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</title><author>van Dommelen, Leon ; Rundensteiner, Elke A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-440cc7562bff91353732306cf59c984d8ba0c67c4055cf2d95ad0f305d2766ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Exact sciences and technology</topic><topic>Fluid Mechanics And Heat Transfer</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Dommelen, Leon</creatorcontrib><creatorcontrib>Rundensteiner, Elke A.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Dommelen, Leon</au><au>Rundensteiner, Elke A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast, adaptive summation of point forces in the two-dimensional Poisson equation</atitle><jtitle>Journal of computational physics</jtitle><date>1989-07-01</date><risdate>1989</risdate><volume>83</volume><issue>1</issue><spage>126</spage><epage>147</epage><pages>126-147</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Direct summation of the velocity field introduced by point vortices tends to be time consuming since the velocity of each vortex is found as a sum over all other vortices. The resulting number of numerical operations is proportional to the square of the number of vortices. Here a relatively simple procedure is outlined which significantly reduces the number of operations by replacing selected partial sums by asymptotic series. The resulting number of operations appears to vary roughly in proportion to the number of unknowns, corresponding to a “fast” solver.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(89)90225-8</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1989-07, Vol.83 (1), p.126-147
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_25222797
source Access via ScienceDirect (Elsevier); NASA Technical Reports Server
subjects Exact sciences and technology
Fluid Mechanics And Heat Transfer
Mathematical methods in physics
Numerical approximation and analysis
Physics
title Fast, adaptive summation of point forces in the two-dimensional Poisson equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast,%20adaptive%20summation%20of%20point%20forces%20in%20the%20two-dimensional%20Poisson%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=van%20Dommelen,%20Leon&rft.date=1989-07-01&rft.volume=83&rft.issue=1&rft.spage=126&rft.epage=147&rft.pages=126-147&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(89)90225-8&rft_dat=%3Cproquest_cross%3E25222797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25222797&rft_id=info:pmid/&rft_els_id=0021999189902258&rfr_iscdi=true