Aqueous phase oxidation of bisulfite influenced by nitrate and its photolysis
Nitrate aerosol is ubiquitous in the atmosphere. Nitrate in the particulate and aqueous phase can affect various atmospheric chemical processes through its hygroscopicity and photolysis. The impacts of nitrate photolysis on the heterogeneous oxidation of SO2 have been attracting attention. However,...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2021-09, Vol.785, p.147345-147345, Article 147345 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitrate aerosol is ubiquitous in the atmosphere. Nitrate in the particulate and aqueous phase can affect various atmospheric chemical processes through its hygroscopicity and photolysis. The impacts of nitrate photolysis on the heterogeneous oxidation of SO2 have been attracting attention. However, the influence of nitrate on heterogeneous aqueous phase formation of atmospheric sulfate aerosol is still not very clear. In this study, the effects of nitrate on aqueous phase oxidation of bisulfite under different conditions were investigated. Results show that nitrate photolysis can promote the oxidation of bisulfite to sulfate, especially in the presence of O2. It is found that pH plays a significant role in the reaction, and ammonium sulfate has significant impacts on the enhancement of aqueous phase sulfate production through regulating the pH of solution. An apparent synergism is found among halogen chemistry, nitrate and its photochemistry and S (IV) aqueous oxidation, especially the oxidation of halide ions by nitrate and its photolysis and by the intermediate products produced by the free radical chain oxidation of S (IV) in acidic solution, leading to the coupling of the redox cycle of halogen with the oxidation of bisulfite, which promotes the continuous aqueous oxidation of bisulfite and the formation of sulfate. In addition, the role of nitrate itself in the aqueous phase oxidation of bisulfite is revealed. These results provide a new insight into the heterogeneous aqueous phase oxidation pathways and mechanisms of SO2 in cloud and fog droplets and haze particles.
[Display omitted]
•Nitrate increases the complexity of aqueous phase formation mechanism of secondary sulfate.•Significant roles of pH and NH4+ in the enhanced bisulfite oxidation and sulfate formation.•O2 plays a more important role in the promotion of aqueous oxidation of bisulfite by virtue of nitrate photolysis.•The coupling among nitrate photolysis, redox cycle of halogen and S(IV) oxidation greatly promotes sulfate formation. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.147345 |