A family of flux-limited diffusion theories

We present a family of diffusion approximations to the equation of radiative transfer, parameterized functionally by a function χ(ω, R). Here ω is the effective (treating emission as scattering) single scatter albedo, and R is roughly speaking the magnitude of the dimensionless spatial gradient of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 1991-06, Vol.45 (6), p.313-337
Hauptverfasser: Sanchez, Richard, Pomraning, G.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 6
container_start_page 313
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 45
creator Sanchez, Richard
Pomraning, G.C.
description We present a family of diffusion approximations to the equation of radiative transfer, parameterized functionally by a function χ(ω, R). Here ω is the effective (treating emission as scattering) single scatter albedo, and R is roughly speaking the magnitude of the dimensionless spatial gradient of the energy density. For any member of this family, i.e., for any function χ, this diffusion theory is flux-limited, properly predicts a single asymptotic mode in a sourcefree homogeneous medium, and gives the correct weak gradient limit. If the choice χ ≡ 1 is made, this family reduces to the flux-limited diffusion theory proposed earlier by Levermore and Pomraning. We suggest a function χ that depends only upon the single variable ω. Simple test problems indicate that this choice leads to improved accuracy over both classic and the earlier flux-limited diffusion theory. This choice also allows the radiative flux and energy density gradient to have independent directions, and this may result in increased accuracy in multidimensional problems.
doi_str_mv 10.1016/0022-4073(91)90068-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25217132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022407391900682</els_id><sourcerecordid>25217132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-a0731d0b5e611bcfb343b8a1a4f79bbb48326b3f09fa1312b72ef8b8c39313fe3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw89iChSzctr0_YiLIv_YMGLnkOSvmCk3a5JK-63d-sue_Q0l9_MMMPYOfBb4CDvOBcizXiBVxVcV5zLMhUHbAJlUaWAuThkkz1yzE5i_OScI4KcsJtZ4nTrm3XSucQ1w0_a-Nb3VCe1d26Ivlsm_Qd1wVM8ZUdON5HOdjpl748Pb_PndPH69DKfLVKLUvap3rRAzU1OEsBYZzBDU2rQmSsqY0xWopAGHa-cBgRhCkGuNKXFCgEd4ZRdbnNXofsaKPaq9dFS0-gldUNUIhdQAIoNmG1BG7oYAzm1Cr7VYa2Aq_EZNc5W42xVgfp7Ro22i12-jlY3Luil9XHvzXKZQzFi91uMNlu_PQUVraelpdoHsr2qO_9_zy-QnXWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25217132</pqid></control><display><type>article</type><title>A family of flux-limited diffusion theories</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sanchez, Richard ; Pomraning, G.C.</creator><creatorcontrib>Sanchez, Richard ; Pomraning, G.C.</creatorcontrib><description>We present a family of diffusion approximations to the equation of radiative transfer, parameterized functionally by a function χ(ω, R). Here ω is the effective (treating emission as scattering) single scatter albedo, and R is roughly speaking the magnitude of the dimensionless spatial gradient of the energy density. For any member of this family, i.e., for any function χ, this diffusion theory is flux-limited, properly predicts a single asymptotic mode in a sourcefree homogeneous medium, and gives the correct weak gradient limit. If the choice χ ≡ 1 is made, this family reduces to the flux-limited diffusion theory proposed earlier by Levermore and Pomraning. We suggest a function χ that depends only upon the single variable ω. Simple test problems indicate that this choice leads to improved accuracy over both classic and the earlier flux-limited diffusion theory. This choice also allows the radiative flux and energy density gradient to have independent directions, and this may result in increased accuracy in multidimensional problems.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/0022-4073(91)90068-2</identifier><identifier>CODEN: JQSRAE</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; General theory of scattering ; Physics</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 1991-06, Vol.45 (6), p.313-337</ispartof><rights>1991</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-a0731d0b5e611bcfb343b8a1a4f79bbb48326b3f09fa1312b72ef8b8c39313fe3</citedby><cites>FETCH-LOGICAL-c366t-a0731d0b5e611bcfb343b8a1a4f79bbb48326b3f09fa1312b72ef8b8c39313fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022407391900682$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4565172$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Richard</creatorcontrib><creatorcontrib>Pomraning, G.C.</creatorcontrib><title>A family of flux-limited diffusion theories</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>We present a family of diffusion approximations to the equation of radiative transfer, parameterized functionally by a function χ(ω, R). Here ω is the effective (treating emission as scattering) single scatter albedo, and R is roughly speaking the magnitude of the dimensionless spatial gradient of the energy density. For any member of this family, i.e., for any function χ, this diffusion theory is flux-limited, properly predicts a single asymptotic mode in a sourcefree homogeneous medium, and gives the correct weak gradient limit. If the choice χ ≡ 1 is made, this family reduces to the flux-limited diffusion theory proposed earlier by Levermore and Pomraning. We suggest a function χ that depends only upon the single variable ω. Simple test problems indicate that this choice leads to improved accuracy over both classic and the earlier flux-limited diffusion theory. This choice also allows the radiative flux and energy density gradient to have independent directions, and this may result in increased accuracy in multidimensional problems.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>General theory of scattering</subject><subject>Physics</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw89iChSzctr0_YiLIv_YMGLnkOSvmCk3a5JK-63d-sue_Q0l9_MMMPYOfBb4CDvOBcizXiBVxVcV5zLMhUHbAJlUaWAuThkkz1yzE5i_OScI4KcsJtZ4nTrm3XSucQ1w0_a-Nb3VCe1d26Ivlsm_Qd1wVM8ZUdON5HOdjpl748Pb_PndPH69DKfLVKLUvap3rRAzU1OEsBYZzBDU2rQmSsqY0xWopAGHa-cBgRhCkGuNKXFCgEd4ZRdbnNXofsaKPaq9dFS0-gldUNUIhdQAIoNmG1BG7oYAzm1Cr7VYa2Aq_EZNc5W42xVgfp7Ro22i12-jlY3Luil9XHvzXKZQzFi91uMNlu_PQUVraelpdoHsr2qO_9_zy-QnXWY</recordid><startdate>19910601</startdate><enddate>19910601</enddate><creator>Sanchez, Richard</creator><creator>Pomraning, G.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19910601</creationdate><title>A family of flux-limited diffusion theories</title><author>Sanchez, Richard ; Pomraning, G.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-a0731d0b5e611bcfb343b8a1a4f79bbb48326b3f09fa1312b72ef8b8c39313fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>General theory of scattering</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Richard</creatorcontrib><creatorcontrib>Pomraning, G.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Richard</au><au>Pomraning, G.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A family of flux-limited diffusion theories</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>1991-06-01</date><risdate>1991</risdate><volume>45</volume><issue>6</issue><spage>313</spage><epage>337</epage><pages>313-337</pages><issn>0022-4073</issn><eissn>1879-1352</eissn><coden>JQSRAE</coden><abstract>We present a family of diffusion approximations to the equation of radiative transfer, parameterized functionally by a function χ(ω, R). Here ω is the effective (treating emission as scattering) single scatter albedo, and R is roughly speaking the magnitude of the dimensionless spatial gradient of the energy density. For any member of this family, i.e., for any function χ, this diffusion theory is flux-limited, properly predicts a single asymptotic mode in a sourcefree homogeneous medium, and gives the correct weak gradient limit. If the choice χ ≡ 1 is made, this family reduces to the flux-limited diffusion theory proposed earlier by Levermore and Pomraning. We suggest a function χ that depends only upon the single variable ω. Simple test problems indicate that this choice leads to improved accuracy over both classic and the earlier flux-limited diffusion theory. This choice also allows the radiative flux and energy density gradient to have independent directions, and this may result in increased accuracy in multidimensional problems.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/0022-4073(91)90068-2</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 1991-06, Vol.45 (6), p.313-337
issn 0022-4073
1879-1352
language eng
recordid cdi_proquest_miscellaneous_25217132
source Elsevier ScienceDirect Journals Complete
subjects Classical and quantum physics: mechanics and fields
Exact sciences and technology
General theory of scattering
Physics
title A family of flux-limited diffusion theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20family%20of%20flux-limited%20diffusion%20theories&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Sanchez,%20Richard&rft.date=1991-06-01&rft.volume=45&rft.issue=6&rft.spage=313&rft.epage=337&rft.pages=313-337&rft.issn=0022-4073&rft.eissn=1879-1352&rft.coden=JQSRAE&rft_id=info:doi/10.1016/0022-4073(91)90068-2&rft_dat=%3Cproquest_cross%3E25217132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25217132&rft_id=info:pmid/&rft_els_id=0022407391900682&rfr_iscdi=true