Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries

Rechargeable aqueous zinc–iodine batteries (AZIBs) represent excellent zinc–iodine redox chemistry and emerged as a promising aspirant due to their high safety, low cost, ease of fabrication, and high energy density. Nevertheless, the high-dissolution-induced iodide diffusion toward the zinc anode b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-05, Vol.13 (18), p.21426-21435
Hauptverfasser: Machhi, Hiren K, Sonigara, Keval K, Bariya, Sanjay N, Soni, Hemant P, Soni, Saurabh S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21435
container_issue 18
container_start_page 21426
container_title ACS applied materials & interfaces
container_volume 13
creator Machhi, Hiren K
Sonigara, Keval K
Bariya, Sanjay N
Soni, Hemant P
Soni, Saurabh S
description Rechargeable aqueous zinc–iodine batteries (AZIBs) represent excellent zinc–iodine redox chemistry and emerged as a promising aspirant due to their high safety, low cost, ease of fabrication, and high energy density. Nevertheless, the high-dissolution-induced iodide diffusion toward the zinc anode brings the self-discharge, which governs the capacity fading and poor cycling life of the battery. Herein, a multipurpose sponge-like porous matrix of a metal–organic gel to host a substantial amount of an iodine-based catholyte and uniform distribution of iodine with controlled iodide diffusion is introduced. Limiting the iodine diffusion due to increased viscosity provides superior electrochemical performance of this promising cathode for solid-state AZIBs. As a result, AZIBs delivering high performance and long-term stability are fabricated with a capacity of 184.9 mA h g–1 with a superior capacity retention of 95.8% even after 1500 cycles at 1 C rate. The unique concept of self-discharge protection is successfully evaluated. Prototype flexible band-aid-type AZIBs were fabricated, which delivered 166.4 mA h g–1 capacity in the bending state, and applied to real-scale wearable applications.
doi_str_mv 10.1021/acsami.1c03812
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2521496800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521496800</sourcerecordid><originalsourceid>FETCH-LOGICAL-a680-6ca6d36551ae32959cb8acfede2de86b1a542f7d5f8f0c32ea8d206cfa3479dd3</originalsourceid><addsrcrecordid>eNo9kT1OAzEQhVcIJH5bapcIacH2_rBbQoAkUlCQQkWzmtjjxMixwfYW6bgDB-BunASHRFQzGj3N-_Relp0zesUoZ9cgAqz0FRO0aBjfy45YW5Z5wyu-_7-X5WF2HMIbpXXBaXWUfY80evBiqQUYsybPzrs-kCeMYH4-v6Z-AVYLMkRDRi5EbRdkAHHpzDoiUc6TiV7pv_PYSW2R3Gul-qCdJWAlmaFR-b0OYgl-gWTgbPTOEG3JrA8RtIW5QXL70ePG9VVbkUzHnNxBjOg1htPsQIEJeLabJ9nL48PLYJRPpsPx4HaSQ93QvBZQy6KuKgZY8LZqxbwBoVAil9jUcwZVydWNrFSjqCg4QiM5rYWCorxppSxOsovt23fvEkyI3SpBozFgN2RdCpGVbbKiSXq5laa8uzfXe5u4Oka7TQndtoRuV0LxC1yMgPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521496800</pqid></control><display><type>article</type><title>Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries</title><source>ACS Publications</source><creator>Machhi, Hiren K ; Sonigara, Keval K ; Bariya, Sanjay N ; Soni, Hemant P ; Soni, Saurabh S</creator><creatorcontrib>Machhi, Hiren K ; Sonigara, Keval K ; Bariya, Sanjay N ; Soni, Hemant P ; Soni, Saurabh S</creatorcontrib><description>Rechargeable aqueous zinc–iodine batteries (AZIBs) represent excellent zinc–iodine redox chemistry and emerged as a promising aspirant due to their high safety, low cost, ease of fabrication, and high energy density. Nevertheless, the high-dissolution-induced iodide diffusion toward the zinc anode brings the self-discharge, which governs the capacity fading and poor cycling life of the battery. Herein, a multipurpose sponge-like porous matrix of a metal–organic gel to host a substantial amount of an iodine-based catholyte and uniform distribution of iodine with controlled iodide diffusion is introduced. Limiting the iodine diffusion due to increased viscosity provides superior electrochemical performance of this promising cathode for solid-state AZIBs. As a result, AZIBs delivering high performance and long-term stability are fabricated with a capacity of 184.9 mA h g–1 with a superior capacity retention of 95.8% even after 1500 cycles at 1 C rate. The unique concept of self-discharge protection is successfully evaluated. Prototype flexible band-aid-type AZIBs were fabricated, which delivered 166.4 mA h g–1 capacity in the bending state, and applied to real-scale wearable applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c03812</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-05, Vol.13 (18), p.21426-21435</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2617-6368 ; 0000-0002-6017-9706 ; 0000-0002-7584-4916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c03812$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c03812$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Machhi, Hiren K</creatorcontrib><creatorcontrib>Sonigara, Keval K</creatorcontrib><creatorcontrib>Bariya, Sanjay N</creatorcontrib><creatorcontrib>Soni, Hemant P</creatorcontrib><creatorcontrib>Soni, Saurabh S</creatorcontrib><title>Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Rechargeable aqueous zinc–iodine batteries (AZIBs) represent excellent zinc–iodine redox chemistry and emerged as a promising aspirant due to their high safety, low cost, ease of fabrication, and high energy density. Nevertheless, the high-dissolution-induced iodide diffusion toward the zinc anode brings the self-discharge, which governs the capacity fading and poor cycling life of the battery. Herein, a multipurpose sponge-like porous matrix of a metal–organic gel to host a substantial amount of an iodine-based catholyte and uniform distribution of iodine with controlled iodide diffusion is introduced. Limiting the iodine diffusion due to increased viscosity provides superior electrochemical performance of this promising cathode for solid-state AZIBs. As a result, AZIBs delivering high performance and long-term stability are fabricated with a capacity of 184.9 mA h g–1 with a superior capacity retention of 95.8% even after 1500 cycles at 1 C rate. The unique concept of self-discharge protection is successfully evaluated. Prototype flexible band-aid-type AZIBs were fabricated, which delivered 166.4 mA h g–1 capacity in the bending state, and applied to real-scale wearable applications.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kT1OAzEQhVcIJH5bapcIacH2_rBbQoAkUlCQQkWzmtjjxMixwfYW6bgDB-BunASHRFQzGj3N-_Relp0zesUoZ9cgAqz0FRO0aBjfy45YW5Z5wyu-_7-X5WF2HMIbpXXBaXWUfY80evBiqQUYsybPzrs-kCeMYH4-v6Z-AVYLMkRDRi5EbRdkAHHpzDoiUc6TiV7pv_PYSW2R3Gul-qCdJWAlmaFR-b0OYgl-gWTgbPTOEG3JrA8RtIW5QXL70ePG9VVbkUzHnNxBjOg1htPsQIEJeLabJ9nL48PLYJRPpsPx4HaSQ93QvBZQy6KuKgZY8LZqxbwBoVAil9jUcwZVydWNrFSjqCg4QiM5rYWCorxppSxOsovt23fvEkyI3SpBozFgN2RdCpGVbbKiSXq5laa8uzfXe5u4Oka7TQndtoRuV0LxC1yMgPM</recordid><startdate>20210512</startdate><enddate>20210512</enddate><creator>Machhi, Hiren K</creator><creator>Sonigara, Keval K</creator><creator>Bariya, Sanjay N</creator><creator>Soni, Hemant P</creator><creator>Soni, Saurabh S</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2617-6368</orcidid><orcidid>https://orcid.org/0000-0002-6017-9706</orcidid><orcidid>https://orcid.org/0000-0002-7584-4916</orcidid></search><sort><creationdate>20210512</creationdate><title>Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries</title><author>Machhi, Hiren K ; Sonigara, Keval K ; Bariya, Sanjay N ; Soni, Hemant P ; Soni, Saurabh S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a680-6ca6d36551ae32959cb8acfede2de86b1a542f7d5f8f0c32ea8d206cfa3479dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machhi, Hiren K</creatorcontrib><creatorcontrib>Sonigara, Keval K</creatorcontrib><creatorcontrib>Bariya, Sanjay N</creatorcontrib><creatorcontrib>Soni, Hemant P</creatorcontrib><creatorcontrib>Soni, Saurabh S</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machhi, Hiren K</au><au>Sonigara, Keval K</au><au>Bariya, Sanjay N</au><au>Soni, Hemant P</au><au>Soni, Saurabh S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-05-12</date><risdate>2021</risdate><volume>13</volume><issue>18</issue><spage>21426</spage><epage>21435</epage><pages>21426-21435</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Rechargeable aqueous zinc–iodine batteries (AZIBs) represent excellent zinc–iodine redox chemistry and emerged as a promising aspirant due to their high safety, low cost, ease of fabrication, and high energy density. Nevertheless, the high-dissolution-induced iodide diffusion toward the zinc anode brings the self-discharge, which governs the capacity fading and poor cycling life of the battery. Herein, a multipurpose sponge-like porous matrix of a metal–organic gel to host a substantial amount of an iodine-based catholyte and uniform distribution of iodine with controlled iodide diffusion is introduced. Limiting the iodine diffusion due to increased viscosity provides superior electrochemical performance of this promising cathode for solid-state AZIBs. As a result, AZIBs delivering high performance and long-term stability are fabricated with a capacity of 184.9 mA h g–1 with a superior capacity retention of 95.8% even after 1500 cycles at 1 C rate. The unique concept of self-discharge protection is successfully evaluated. Prototype flexible band-aid-type AZIBs were fabricated, which delivered 166.4 mA h g–1 capacity in the bending state, and applied to real-scale wearable applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c03812</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2617-6368</orcidid><orcidid>https://orcid.org/0000-0002-6017-9706</orcidid><orcidid>https://orcid.org/0000-0002-7584-4916</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-05, Vol.13 (18), p.21426-21435
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2521496800
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Hierarchically Porous Metal–Organic Gel Hosting Catholyte for Limiting Iodine Diffusion and Self-Discharge Control in Sustainable Aqueous Zinc–I2 Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20Porous%20Metal%E2%80%93Organic%20Gel%20Hosting%20Catholyte%20for%20Limiting%20Iodine%20Diffusion%20and%20Self-Discharge%20Control%20in%20Sustainable%20Aqueous%20Zinc%E2%80%93I2%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Machhi,%20Hiren%20K&rft.date=2021-05-12&rft.volume=13&rft.issue=18&rft.spage=21426&rft.epage=21435&rft.pages=21426-21435&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c03812&rft_dat=%3Cproquest_acs_j%3E2521496800%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521496800&rft_id=info:pmid/&rfr_iscdi=true