Decision tree‐based rules outperform risk scores for childhood asthma prognosis

Background There are no widely accepted prognostic tools for childhood asthma; this is in part due to the multifactorial and time‐dependent nature of mechanisms and risk factors that contribute to asthma development. Our study objective was to develop and evaluate the prognostic performance of condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric allergy and immunology 2021-10, Vol.32 (7), p.1464-1473
Hauptverfasser: Owora, Arthur H., Tepper, Robert S., Ramsey, Clare D., Becker, Allan B., Genuneit, Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1473
container_issue 7
container_start_page 1464
container_title Pediatric allergy and immunology
container_volume 32
creator Owora, Arthur H.
Tepper, Robert S.
Ramsey, Clare D.
Becker, Allan B.
Genuneit, Jon
description Background There are no widely accepted prognostic tools for childhood asthma; this is in part due to the multifactorial and time‐dependent nature of mechanisms and risk factors that contribute to asthma development. Our study objective was to develop and evaluate the prognostic performance of conditional inference decision tree–based rules using the Pediatric Asthma Risk Score (PARS) predictors as an alternative to the existing logistic regression‐based risk score for childhood asthma prediction at 7 years in a high‐risk population. Methods The Canadian Asthma Primary Prevention Study data were used to develop, compare, and contrast the prognostic performance (area under the curve [AUC], sensitivity, and specificity) of conditional inference tree‐based decision rules to the pediatric asthma risk score for the prediction of childhood asthma at 7 years. Results Conditional inference decision tree–based rules have higher prognostic performance (AUC: 0.85; 95% CI: 0.81, 0.88; sensitivity = 47%; specificity = 93%) than the pediatric asthma risk score at an optimal cutoff of ≥6 (AUC: 0.71; 95% CI: 0.67, 0.76; sensitivity = 60%; specificity = 74%). Moreover, the pediatric asthma risk score is not linearly related to asthma risk, and at any given pediatric asthma risk score value, different combinations of its pediatric asthma risk score clinical variables differentially predict asthma risk. Conclusion Conditional inference tree–based decision rules could be a useful childhood asthma prognostic tool, providing an alternative way to identify unique subgroups of at‐risk children, and insights into associations and effect mechanisms that are suggestive of appropriate tailored preventive interventions. However, the feasibility and effectiveness of such decision rules in clinical practice is warranted.
doi_str_mv 10.1111/pai.13530
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2521495406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577896771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-87f8b9e3d1c5efae19ce698f34194ec46a5eed7451c369c6d4d1f09b5459aafc3</originalsourceid><addsrcrecordid>eNp10N9KwzAUBvAgipvTC19ACt7oRbdkadrkcsx_g4EKel3S9NRltk1NWmR3PoLP6JMY7fRC8NwEDj--HD6EjgkeEz-TRuoxoYziHTQkVIiQYsp30RALzMKYsGSADpxbY0wSGpN9NKBUUO7NEN1fgNJOmzpoLcDH23smHeSB7UpwgenaBmxhbBVY7Z4Dp4z1a78I1EqX-cqYPJCuXVUyaKx5qo3T7hDtFbJ0cLR9R-jx6vJhfhMub68X89kyVJRzHPKk4JkAmhPFoJBAhIJY8IJGRESgolgygDyJGFE0FirOo5wUWGQsYkLKQtEROutz_c8vHbg2rbRTUJayBtO5dMqmJBIswrGnp3_o2nS29td5lSRcxElCvDrvlbLGOQtF2lhdSbtJCU6_ek59z-l3z96ebBO7rIL8V_4U68GkB6-6hM3_SendbNFHfgJYCIhv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577896771</pqid></control><display><type>article</type><title>Decision tree‐based rules outperform risk scores for childhood asthma prognosis</title><source>Wiley Online Library All Journals</source><creator>Owora, Arthur H. ; Tepper, Robert S. ; Ramsey, Clare D. ; Becker, Allan B. ; Genuneit, Jon</creator><contributor>Genuneit, Jon</contributor><creatorcontrib>Owora, Arthur H. ; Tepper, Robert S. ; Ramsey, Clare D. ; Becker, Allan B. ; Genuneit, Jon ; Genuneit, Jon</creatorcontrib><description>Background There are no widely accepted prognostic tools for childhood asthma; this is in part due to the multifactorial and time‐dependent nature of mechanisms and risk factors that contribute to asthma development. Our study objective was to develop and evaluate the prognostic performance of conditional inference decision tree–based rules using the Pediatric Asthma Risk Score (PARS) predictors as an alternative to the existing logistic regression‐based risk score for childhood asthma prediction at 7 years in a high‐risk population. Methods The Canadian Asthma Primary Prevention Study data were used to develop, compare, and contrast the prognostic performance (area under the curve [AUC], sensitivity, and specificity) of conditional inference tree‐based decision rules to the pediatric asthma risk score for the prediction of childhood asthma at 7 years. Results Conditional inference decision tree–based rules have higher prognostic performance (AUC: 0.85; 95% CI: 0.81, 0.88; sensitivity = 47%; specificity = 93%) than the pediatric asthma risk score at an optimal cutoff of ≥6 (AUC: 0.71; 95% CI: 0.67, 0.76; sensitivity = 60%; specificity = 74%). Moreover, the pediatric asthma risk score is not linearly related to asthma risk, and at any given pediatric asthma risk score value, different combinations of its pediatric asthma risk score clinical variables differentially predict asthma risk. Conclusion Conditional inference tree–based decision rules could be a useful childhood asthma prognostic tool, providing an alternative way to identify unique subgroups of at‐risk children, and insights into associations and effect mechanisms that are suggestive of appropriate tailored preventive interventions. However, the feasibility and effectiveness of such decision rules in clinical practice is warranted.</description><identifier>ISSN: 0905-6157</identifier><identifier>EISSN: 1399-3038</identifier><identifier>DOI: 10.1111/pai.13530</identifier><identifier>PMID: 33938038</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Asthma ; asthma prediction ; Childhood ; childhood asthma ; Children ; Childrens health ; decision rules ; Decision trees ; Medical prognosis ; Pediatrics ; prognosis ; Risk factors</subject><ispartof>Pediatric allergy and immunology, 2021-10, Vol.32 (7), p.1464-1473</ispartof><rights>2021 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-87f8b9e3d1c5efae19ce698f34194ec46a5eed7451c369c6d4d1f09b5459aafc3</citedby><cites>FETCH-LOGICAL-c3880-87f8b9e3d1c5efae19ce698f34194ec46a5eed7451c369c6d4d1f09b5459aafc3</cites><orcidid>0000-0002-4580-7428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpai.13530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpai.13530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33938038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Genuneit, Jon</contributor><creatorcontrib>Owora, Arthur H.</creatorcontrib><creatorcontrib>Tepper, Robert S.</creatorcontrib><creatorcontrib>Ramsey, Clare D.</creatorcontrib><creatorcontrib>Becker, Allan B.</creatorcontrib><creatorcontrib>Genuneit, Jon</creatorcontrib><title>Decision tree‐based rules outperform risk scores for childhood asthma prognosis</title><title>Pediatric allergy and immunology</title><addtitle>Pediatr Allergy Immunol</addtitle><description>Background There are no widely accepted prognostic tools for childhood asthma; this is in part due to the multifactorial and time‐dependent nature of mechanisms and risk factors that contribute to asthma development. Our study objective was to develop and evaluate the prognostic performance of conditional inference decision tree–based rules using the Pediatric Asthma Risk Score (PARS) predictors as an alternative to the existing logistic regression‐based risk score for childhood asthma prediction at 7 years in a high‐risk population. Methods The Canadian Asthma Primary Prevention Study data were used to develop, compare, and contrast the prognostic performance (area under the curve [AUC], sensitivity, and specificity) of conditional inference tree‐based decision rules to the pediatric asthma risk score for the prediction of childhood asthma at 7 years. Results Conditional inference decision tree–based rules have higher prognostic performance (AUC: 0.85; 95% CI: 0.81, 0.88; sensitivity = 47%; specificity = 93%) than the pediatric asthma risk score at an optimal cutoff of ≥6 (AUC: 0.71; 95% CI: 0.67, 0.76; sensitivity = 60%; specificity = 74%). Moreover, the pediatric asthma risk score is not linearly related to asthma risk, and at any given pediatric asthma risk score value, different combinations of its pediatric asthma risk score clinical variables differentially predict asthma risk. Conclusion Conditional inference tree–based decision rules could be a useful childhood asthma prognostic tool, providing an alternative way to identify unique subgroups of at‐risk children, and insights into associations and effect mechanisms that are suggestive of appropriate tailored preventive interventions. However, the feasibility and effectiveness of such decision rules in clinical practice is warranted.</description><subject>Asthma</subject><subject>asthma prediction</subject><subject>Childhood</subject><subject>childhood asthma</subject><subject>Children</subject><subject>Childrens health</subject><subject>decision rules</subject><subject>Decision trees</subject><subject>Medical prognosis</subject><subject>Pediatrics</subject><subject>prognosis</subject><subject>Risk factors</subject><issn>0905-6157</issn><issn>1399-3038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10N9KwzAUBvAgipvTC19ACt7oRbdkadrkcsx_g4EKel3S9NRltk1NWmR3PoLP6JMY7fRC8NwEDj--HD6EjgkeEz-TRuoxoYziHTQkVIiQYsp30RALzMKYsGSADpxbY0wSGpN9NKBUUO7NEN1fgNJOmzpoLcDH23smHeSB7UpwgenaBmxhbBVY7Z4Dp4z1a78I1EqX-cqYPJCuXVUyaKx5qo3T7hDtFbJ0cLR9R-jx6vJhfhMub68X89kyVJRzHPKk4JkAmhPFoJBAhIJY8IJGRESgolgygDyJGFE0FirOo5wUWGQsYkLKQtEROutz_c8vHbg2rbRTUJayBtO5dMqmJBIswrGnp3_o2nS29td5lSRcxElCvDrvlbLGOQtF2lhdSbtJCU6_ek59z-l3z96ebBO7rIL8V_4U68GkB6-6hM3_SendbNFHfgJYCIhv</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Owora, Arthur H.</creator><creator>Tepper, Robert S.</creator><creator>Ramsey, Clare D.</creator><creator>Becker, Allan B.</creator><creator>Genuneit, Jon</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4580-7428</orcidid></search><sort><creationdate>202110</creationdate><title>Decision tree‐based rules outperform risk scores for childhood asthma prognosis</title><author>Owora, Arthur H. ; Tepper, Robert S. ; Ramsey, Clare D. ; Becker, Allan B. ; Genuneit, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-87f8b9e3d1c5efae19ce698f34194ec46a5eed7451c369c6d4d1f09b5459aafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asthma</topic><topic>asthma prediction</topic><topic>Childhood</topic><topic>childhood asthma</topic><topic>Children</topic><topic>Childrens health</topic><topic>decision rules</topic><topic>Decision trees</topic><topic>Medical prognosis</topic><topic>Pediatrics</topic><topic>prognosis</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owora, Arthur H.</creatorcontrib><creatorcontrib>Tepper, Robert S.</creatorcontrib><creatorcontrib>Ramsey, Clare D.</creatorcontrib><creatorcontrib>Becker, Allan B.</creatorcontrib><creatorcontrib>Genuneit, Jon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Pediatric allergy and immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owora, Arthur H.</au><au>Tepper, Robert S.</au><au>Ramsey, Clare D.</au><au>Becker, Allan B.</au><au>Genuneit, Jon</au><au>Genuneit, Jon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision tree‐based rules outperform risk scores for childhood asthma prognosis</atitle><jtitle>Pediatric allergy and immunology</jtitle><addtitle>Pediatr Allergy Immunol</addtitle><date>2021-10</date><risdate>2021</risdate><volume>32</volume><issue>7</issue><spage>1464</spage><epage>1473</epage><pages>1464-1473</pages><issn>0905-6157</issn><eissn>1399-3038</eissn><abstract>Background There are no widely accepted prognostic tools for childhood asthma; this is in part due to the multifactorial and time‐dependent nature of mechanisms and risk factors that contribute to asthma development. Our study objective was to develop and evaluate the prognostic performance of conditional inference decision tree–based rules using the Pediatric Asthma Risk Score (PARS) predictors as an alternative to the existing logistic regression‐based risk score for childhood asthma prediction at 7 years in a high‐risk population. Methods The Canadian Asthma Primary Prevention Study data were used to develop, compare, and contrast the prognostic performance (area under the curve [AUC], sensitivity, and specificity) of conditional inference tree‐based decision rules to the pediatric asthma risk score for the prediction of childhood asthma at 7 years. Results Conditional inference decision tree–based rules have higher prognostic performance (AUC: 0.85; 95% CI: 0.81, 0.88; sensitivity = 47%; specificity = 93%) than the pediatric asthma risk score at an optimal cutoff of ≥6 (AUC: 0.71; 95% CI: 0.67, 0.76; sensitivity = 60%; specificity = 74%). Moreover, the pediatric asthma risk score is not linearly related to asthma risk, and at any given pediatric asthma risk score value, different combinations of its pediatric asthma risk score clinical variables differentially predict asthma risk. Conclusion Conditional inference tree–based decision rules could be a useful childhood asthma prognostic tool, providing an alternative way to identify unique subgroups of at‐risk children, and insights into associations and effect mechanisms that are suggestive of appropriate tailored preventive interventions. However, the feasibility and effectiveness of such decision rules in clinical practice is warranted.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33938038</pmid><doi>10.1111/pai.13530</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4580-7428</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0905-6157
ispartof Pediatric allergy and immunology, 2021-10, Vol.32 (7), p.1464-1473
issn 0905-6157
1399-3038
language eng
recordid cdi_proquest_miscellaneous_2521495406
source Wiley Online Library All Journals
subjects Asthma
asthma prediction
Childhood
childhood asthma
Children
Childrens health
decision rules
Decision trees
Medical prognosis
Pediatrics
prognosis
Risk factors
title Decision tree‐based rules outperform risk scores for childhood asthma prognosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20tree%E2%80%90based%20rules%20outperform%20risk%20scores%20for%20childhood%20asthma%20prognosis&rft.jtitle=Pediatric%20allergy%20and%20immunology&rft.au=Owora,%20Arthur%20H.&rft.date=2021-10&rft.volume=32&rft.issue=7&rft.spage=1464&rft.epage=1473&rft.pages=1464-1473&rft.issn=0905-6157&rft.eissn=1399-3038&rft_id=info:doi/10.1111/pai.13530&rft_dat=%3Cproquest_cross%3E2577896771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577896771&rft_id=info:pmid/33938038&rfr_iscdi=true