Poincaré sphere of electromagnetic spatial coherence

We introduce a Poincaré sphere construction for geometrical representation of the state of two-point spatial coherence in random electromagnetic (vectorial) beams. To this end, a novel descriptor of coherence is invoked, which shares some important mathematical properties with the polarization matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2021-05, Vol.46 (9), p.2143-2146
Hauptverfasser: Laatikainen, Jyrki, Friberg, Ari T, Korotkova, Olga, Setälä, Tero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2146
container_issue 9
container_start_page 2143
container_title Optics letters
container_volume 46
creator Laatikainen, Jyrki
Friberg, Ari T
Korotkova, Olga
Setälä, Tero
description We introduce a Poincaré sphere construction for geometrical representation of the state of two-point spatial coherence in random electromagnetic (vectorial) beams. To this end, a novel descriptor of coherence is invoked, which shares some important mathematical properties with the polarization matrix and spans a new type of Stokes parameter space. The coherence Poincaré sphere emerges as a geometric interpretation of this novel formalism, which is developed for uniformly and nonuniformly fully polarized beams. The construction is extended to partially polarized beams as well and is demonstrated with a field having separable spatial coherence and polarization characteristics. At a single point, the coherence Poincaré sphere reduces to the conventional polarization Poincaré sphere for any state of partial polarization.
doi_str_mv 10.1364/OL.422917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2520889671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520889671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-49cf6ca8ca5db68a92565f69a4b99770bed594e5ae28263d4c35a0af8346154d3</originalsourceid><addsrcrecordid>eNpd0D1Ow0AQBeAVApEQKLgAskQDhcP-21OiiD_JkimgttbrMTiyvWHXLjgS5-BiOEqgoJpiPj09PULOGV0yoeVNni0l58CSAzJnSkAsE5CHZE6Z1DEo4DNyEsKaUqoTIY7JTAjgIAXMiXp2TW-N__6KwuYdPUaujrBFO3jXmbceh8ZOHzM0po2s24re4ik5qk0b8Gx_F-T1_u5l9Rhn-cPT6jaLrWBiiCXYWluTWqOqUqcGuNKq1mBkCZAktMRKgURlkKdci0paoQw1dSqkZkpWYkGudrkb7z5GDEPRNcFi25oe3RgKrjhNU9AJm-jlP7p2o--ndlslQUKi-aSud8p6F4LHutj4pjP-s2C02G5Z5Fmx23KyF_vEseyw-pO_44kffFZtgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524949762</pqid></control><display><type>article</type><title>Poincaré sphere of electromagnetic spatial coherence</title><source>Optica Publishing Group Journals</source><creator>Laatikainen, Jyrki ; Friberg, Ari T ; Korotkova, Olga ; Setälä, Tero</creator><creatorcontrib>Laatikainen, Jyrki ; Friberg, Ari T ; Korotkova, Olga ; Setälä, Tero</creatorcontrib><description>We introduce a Poincaré sphere construction for geometrical representation of the state of two-point spatial coherence in random electromagnetic (vectorial) beams. To this end, a novel descriptor of coherence is invoked, which shares some important mathematical properties with the polarization matrix and spans a new type of Stokes parameter space. The coherence Poincaré sphere emerges as a geometric interpretation of this novel formalism, which is developed for uniformly and nonuniformly fully polarized beams. The construction is extended to partially polarized beams as well and is demonstrated with a field having separable spatial coherence and polarization characteristics. At a single point, the coherence Poincaré sphere reduces to the conventional polarization Poincaré sphere for any state of partial polarization.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.422917</identifier><identifier>PMID: 33929439</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Beams (radiation) ; Coherence ; Mathematical analysis ; Matrix methods ; Poincare spheres ; Polarization characteristics ; Stokes parameters</subject><ispartof>Optics letters, 2021-05, Vol.46 (9), p.2143-2146</ispartof><rights>Copyright Optical Society of America May 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-49cf6ca8ca5db68a92565f69a4b99770bed594e5ae28263d4c35a0af8346154d3</citedby><cites>FETCH-LOGICAL-c313t-49cf6ca8ca5db68a92565f69a4b99770bed594e5ae28263d4c35a0af8346154d3</cites><orcidid>0000-0003-4100-1539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3257,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33929439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laatikainen, Jyrki</creatorcontrib><creatorcontrib>Friberg, Ari T</creatorcontrib><creatorcontrib>Korotkova, Olga</creatorcontrib><creatorcontrib>Setälä, Tero</creatorcontrib><title>Poincaré sphere of electromagnetic spatial coherence</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>We introduce a Poincaré sphere construction for geometrical representation of the state of two-point spatial coherence in random electromagnetic (vectorial) beams. To this end, a novel descriptor of coherence is invoked, which shares some important mathematical properties with the polarization matrix and spans a new type of Stokes parameter space. The coherence Poincaré sphere emerges as a geometric interpretation of this novel formalism, which is developed for uniformly and nonuniformly fully polarized beams. The construction is extended to partially polarized beams as well and is demonstrated with a field having separable spatial coherence and polarization characteristics. At a single point, the coherence Poincaré sphere reduces to the conventional polarization Poincaré sphere for any state of partial polarization.</description><subject>Beams (radiation)</subject><subject>Coherence</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Poincare spheres</subject><subject>Polarization characteristics</subject><subject>Stokes parameters</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0D1Ow0AQBeAVApEQKLgAskQDhcP-21OiiD_JkimgttbrMTiyvWHXLjgS5-BiOEqgoJpiPj09PULOGV0yoeVNni0l58CSAzJnSkAsE5CHZE6Z1DEo4DNyEsKaUqoTIY7JTAjgIAXMiXp2TW-N__6KwuYdPUaujrBFO3jXmbceh8ZOHzM0po2s24re4ik5qk0b8Gx_F-T1_u5l9Rhn-cPT6jaLrWBiiCXYWluTWqOqUqcGuNKq1mBkCZAktMRKgURlkKdci0paoQw1dSqkZkpWYkGudrkb7z5GDEPRNcFi25oe3RgKrjhNU9AJm-jlP7p2o--ndlslQUKi-aSud8p6F4LHutj4pjP-s2C02G5Z5Fmx23KyF_vEseyw-pO_44kffFZtgQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Laatikainen, Jyrki</creator><creator>Friberg, Ari T</creator><creator>Korotkova, Olga</creator><creator>Setälä, Tero</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4100-1539</orcidid></search><sort><creationdate>20210501</creationdate><title>Poincaré sphere of electromagnetic spatial coherence</title><author>Laatikainen, Jyrki ; Friberg, Ari T ; Korotkova, Olga ; Setälä, Tero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-49cf6ca8ca5db68a92565f69a4b99770bed594e5ae28263d4c35a0af8346154d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beams (radiation)</topic><topic>Coherence</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Poincare spheres</topic><topic>Polarization characteristics</topic><topic>Stokes parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laatikainen, Jyrki</creatorcontrib><creatorcontrib>Friberg, Ari T</creatorcontrib><creatorcontrib>Korotkova, Olga</creatorcontrib><creatorcontrib>Setälä, Tero</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laatikainen, Jyrki</au><au>Friberg, Ari T</au><au>Korotkova, Olga</au><au>Setälä, Tero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poincaré sphere of electromagnetic spatial coherence</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>46</volume><issue>9</issue><spage>2143</spage><epage>2146</epage><pages>2143-2146</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>We introduce a Poincaré sphere construction for geometrical representation of the state of two-point spatial coherence in random electromagnetic (vectorial) beams. To this end, a novel descriptor of coherence is invoked, which shares some important mathematical properties with the polarization matrix and spans a new type of Stokes parameter space. The coherence Poincaré sphere emerges as a geometric interpretation of this novel formalism, which is developed for uniformly and nonuniformly fully polarized beams. The construction is extended to partially polarized beams as well and is demonstrated with a field having separable spatial coherence and polarization characteristics. At a single point, the coherence Poincaré sphere reduces to the conventional polarization Poincaré sphere for any state of partial polarization.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33929439</pmid><doi>10.1364/OL.422917</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4100-1539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2021-05, Vol.46 (9), p.2143-2146
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2520889671
source Optica Publishing Group Journals
subjects Beams (radiation)
Coherence
Mathematical analysis
Matrix methods
Poincare spheres
Polarization characteristics
Stokes parameters
title Poincaré sphere of electromagnetic spatial coherence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poincar%C3%A9%20sphere%20of%20electromagnetic%20spatial%20coherence&rft.jtitle=Optics%20letters&rft.au=Laatikainen,%20Jyrki&rft.date=2021-05-01&rft.volume=46&rft.issue=9&rft.spage=2143&rft.epage=2146&rft.pages=2143-2146&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.422917&rft_dat=%3Cproquest_cross%3E2520889671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524949762&rft_id=info:pmid/33929439&rfr_iscdi=true