CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation

Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2021-06, Vol.24 (6), p.777-785
Hauptverfasser: Hosokawa, Tomohisa, Liu, Pin-Wu, Cai, Qixu, Ferreira, Joana S., Levet, Florian, Butler, Corey, Sibarita, Jean-Baptiste, Choquet, Daniel, Groc, Laurent, Hosy, Eric, Zhang, Mingjie, Hayashi, Yasunori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 785
container_issue 6
container_start_page 777
container_title Nature neuroscience
container_volume 24
creator Hosokawa, Tomohisa
Liu, Pin-Wu
Cai, Qixu
Ferreira, Joana S.
Levet, Florian
Butler, Corey
Sibarita, Jean-Baptiste
Choquet, Daniel
Groc, Laurent
Hosy, Eric
Zhang, Mingjie
Hayashi, Yasunori
description Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca 2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca 2+ -induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity. The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation.
doi_str_mv 10.1038/s41593-021-00843-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2520882834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A663934533</galeid><sourcerecordid>A663934533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwBzigSFzoIcXfcY7VqpQVRUh8nDhYE2ccXGWT1HYq9t_j7RaqRQj5YGv8vK9m5i2Kl5ScUcL12yiobHhFGK0I0YJX_FFxTKVQFa2ZepzfpKkrxaQ6Kp7FeE0IqaVunhZHnDesFoQcF99X8PHDel2CTf4Wkp_GcsYQfUw4pmFbRuwD9pAwlvMUU9yOMCdvyzlMCf0Yy1sP5eBvFt-V8w-ImBUzhDun58UTB0PEF_f3SfHt3cXX1fvq6tPlenV-VVmpVao4slp1ounACe4AnXUNiLYTyC2wurUOpQaLVAHIrqWNbmXramhVrZFwx0-KN3vf3NTNgjGZjY8WhwFGnJZomGREa6a5yOjrv9DraQlj7i5TXNG8V6IfqB4GNH50Uwpgd6bmXCnecCE5z9TZP6h8Otx4O43ofK4fCE4PBJlJ-DP1sMRo1l8-H7Jsz9owxRjQmTn4DYStocTs0jf79E1O39ylb3aiV_fTLe0Guz-S33FngO-BmL_GHsPD-P-x_QVYH7qC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536110308</pqid></control><display><type>article</type><title>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Nature Journals Online</source><creator>Hosokawa, Tomohisa ; Liu, Pin-Wu ; Cai, Qixu ; Ferreira, Joana S. ; Levet, Florian ; Butler, Corey ; Sibarita, Jean-Baptiste ; Choquet, Daniel ; Groc, Laurent ; Hosy, Eric ; Zhang, Mingjie ; Hayashi, Yasunori</creator><creatorcontrib>Hosokawa, Tomohisa ; Liu, Pin-Wu ; Cai, Qixu ; Ferreira, Joana S. ; Levet, Florian ; Butler, Corey ; Sibarita, Jean-Baptiste ; Choquet, Daniel ; Groc, Laurent ; Hosy, Eric ; Zhang, Mingjie ; Hayashi, Yasunori</creatorcontrib><description>Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca 2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca 2+ -induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity. The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-021-00843-3</identifier><identifier>PMID: 33927400</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/19 ; 14/35 ; 38/70 ; 631/378/2591 ; 631/378/340 ; 82/1 ; 82/29 ; 82/80 ; 82/83 ; Amino Acid Sequence ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain research ; Ca2+/calmodulin-dependent protein kinase II ; Calcium channels ; Calcium ions ; Calcium signalling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism ; Cellular signal transduction ; Chemical properties ; Enzyme Activation - physiology ; Female ; Glutamic acid receptors ; Glutamic acid receptors (ionotropic) ; Kinases ; Liquid phases ; Liquid-Liquid Extraction - methods ; Male ; Membrane Proteins - analysis ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Memory ; Mice ; Microscopy ; N-Methyl-D-aspartic acid receptors ; Neural transmission ; Neurobiology ; Neurosciences ; Phase separation ; Phase transformations (Statistical physics) ; Physiological aspects ; Plasticity ; Protein kinases ; Proteins ; Rats ; Rats, Sprague-Dawley ; Receptors ; Receptors, AMPA - analysis ; Receptors, AMPA - genetics ; Receptors, AMPA - metabolism ; Receptors, N-Methyl-D-Aspartate - analysis ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - metabolism ; Science ; Selective binding ; Structure-function relationships ; Synaptic plasticity ; Synaptic transmission ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Nature neuroscience, 2021-06, Vol.24 (6), p.777-785</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</citedby><cites>FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</cites><orcidid>0000-0002-4009-6225 ; 0000-0001-8053-2098 ; 0000-0003-4726-9763 ; 0000-0002-7560-3004 ; 0000-0001-9404-0190 ; 0000-0002-1049-8063 ; 0000-0002-4525-4261 ; 0000-0002-2479-5915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-021-00843-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-021-00843-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33927400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosokawa, Tomohisa</creatorcontrib><creatorcontrib>Liu, Pin-Wu</creatorcontrib><creatorcontrib>Cai, Qixu</creatorcontrib><creatorcontrib>Ferreira, Joana S.</creatorcontrib><creatorcontrib>Levet, Florian</creatorcontrib><creatorcontrib>Butler, Corey</creatorcontrib><creatorcontrib>Sibarita, Jean-Baptiste</creatorcontrib><creatorcontrib>Choquet, Daniel</creatorcontrib><creatorcontrib>Groc, Laurent</creatorcontrib><creatorcontrib>Hosy, Eric</creatorcontrib><creatorcontrib>Zhang, Mingjie</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><title>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca 2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca 2+ -induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity. The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation.</description><subject>14/19</subject><subject>14/35</subject><subject>38/70</subject><subject>631/378/2591</subject><subject>631/378/340</subject><subject>82/1</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium channels</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</subject><subject>Cellular signal transduction</subject><subject>Chemical properties</subject><subject>Enzyme Activation - physiology</subject><subject>Female</subject><subject>Glutamic acid receptors</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Kinases</subject><subject>Liquid phases</subject><subject>Liquid-Liquid Extraction - methods</subject><subject>Male</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Memory</subject><subject>Mice</subject><subject>Microscopy</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Neural transmission</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Phase separation</subject><subject>Phase transformations (Statistical physics)</subject><subject>Physiological aspects</subject><subject>Plasticity</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Receptors, AMPA - analysis</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - analysis</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Science</subject><subject>Selective binding</subject><subject>Structure-function relationships</subject><subject>Synaptic plasticity</subject><subject>Synaptic transmission</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhiMEoqXwBzigSFzoIcXfcY7VqpQVRUh8nDhYE2ccXGWT1HYq9t_j7RaqRQj5YGv8vK9m5i2Kl5ScUcL12yiobHhFGK0I0YJX_FFxTKVQFa2ZepzfpKkrxaQ6Kp7FeE0IqaVunhZHnDesFoQcF99X8PHDel2CTf4Wkp_GcsYQfUw4pmFbRuwD9pAwlvMUU9yOMCdvyzlMCf0Yy1sP5eBvFt-V8w-ImBUzhDun58UTB0PEF_f3SfHt3cXX1fvq6tPlenV-VVmpVao4slp1ounACe4AnXUNiLYTyC2wurUOpQaLVAHIrqWNbmXramhVrZFwx0-KN3vf3NTNgjGZjY8WhwFGnJZomGREa6a5yOjrv9DraQlj7i5TXNG8V6IfqB4GNH50Uwpgd6bmXCnecCE5z9TZP6h8Otx4O43ofK4fCE4PBJlJ-DP1sMRo1l8-H7Jsz9owxRjQmTn4DYStocTs0jf79E1O39ylb3aiV_fTLe0Guz-S33FngO-BmL_GHsPD-P-x_QVYH7qC</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hosokawa, Tomohisa</creator><creator>Liu, Pin-Wu</creator><creator>Cai, Qixu</creator><creator>Ferreira, Joana S.</creator><creator>Levet, Florian</creator><creator>Butler, Corey</creator><creator>Sibarita, Jean-Baptiste</creator><creator>Choquet, Daniel</creator><creator>Groc, Laurent</creator><creator>Hosy, Eric</creator><creator>Zhang, Mingjie</creator><creator>Hayashi, Yasunori</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4009-6225</orcidid><orcidid>https://orcid.org/0000-0001-8053-2098</orcidid><orcidid>https://orcid.org/0000-0003-4726-9763</orcidid><orcidid>https://orcid.org/0000-0002-7560-3004</orcidid><orcidid>https://orcid.org/0000-0001-9404-0190</orcidid><orcidid>https://orcid.org/0000-0002-1049-8063</orcidid><orcidid>https://orcid.org/0000-0002-4525-4261</orcidid><orcidid>https://orcid.org/0000-0002-2479-5915</orcidid></search><sort><creationdate>20210601</creationdate><title>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</title><author>Hosokawa, Tomohisa ; Liu, Pin-Wu ; Cai, Qixu ; Ferreira, Joana S. ; Levet, Florian ; Butler, Corey ; Sibarita, Jean-Baptiste ; Choquet, Daniel ; Groc, Laurent ; Hosy, Eric ; Zhang, Mingjie ; Hayashi, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/19</topic><topic>14/35</topic><topic>38/70</topic><topic>631/378/2591</topic><topic>631/378/340</topic><topic>82/1</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium channels</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</topic><topic>Cellular signal transduction</topic><topic>Chemical properties</topic><topic>Enzyme Activation - physiology</topic><topic>Female</topic><topic>Glutamic acid receptors</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Kinases</topic><topic>Liquid phases</topic><topic>Liquid-Liquid Extraction - methods</topic><topic>Male</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Memory</topic><topic>Mice</topic><topic>Microscopy</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Neural transmission</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Phase separation</topic><topic>Phase transformations (Statistical physics)</topic><topic>Physiological aspects</topic><topic>Plasticity</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Receptors, AMPA - analysis</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - analysis</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Science</topic><topic>Selective binding</topic><topic>Structure-function relationships</topic><topic>Synaptic plasticity</topic><topic>Synaptic transmission</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosokawa, Tomohisa</creatorcontrib><creatorcontrib>Liu, Pin-Wu</creatorcontrib><creatorcontrib>Cai, Qixu</creatorcontrib><creatorcontrib>Ferreira, Joana S.</creatorcontrib><creatorcontrib>Levet, Florian</creatorcontrib><creatorcontrib>Butler, Corey</creatorcontrib><creatorcontrib>Sibarita, Jean-Baptiste</creatorcontrib><creatorcontrib>Choquet, Daniel</creatorcontrib><creatorcontrib>Groc, Laurent</creatorcontrib><creatorcontrib>Hosy, Eric</creatorcontrib><creatorcontrib>Zhang, Mingjie</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosokawa, Tomohisa</au><au>Liu, Pin-Wu</au><au>Cai, Qixu</au><au>Ferreira, Joana S.</au><au>Levet, Florian</au><au>Butler, Corey</au><au>Sibarita, Jean-Baptiste</au><au>Choquet, Daniel</au><au>Groc, Laurent</au><au>Hosy, Eric</au><au>Zhang, Mingjie</au><au>Hayashi, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>777</spage><epage>785</epage><pages>777-785</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca 2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca 2+ -induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity. The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33927400</pmid><doi>10.1038/s41593-021-00843-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4009-6225</orcidid><orcidid>https://orcid.org/0000-0001-8053-2098</orcidid><orcidid>https://orcid.org/0000-0003-4726-9763</orcidid><orcidid>https://orcid.org/0000-0002-7560-3004</orcidid><orcidid>https://orcid.org/0000-0001-9404-0190</orcidid><orcidid>https://orcid.org/0000-0002-1049-8063</orcidid><orcidid>https://orcid.org/0000-0002-4525-4261</orcidid><orcidid>https://orcid.org/0000-0002-2479-5915</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2021-06, Vol.24 (6), p.777-785
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_2520882834
source MEDLINE; SpringerNature Journals; Nature Journals Online
subjects 14/19
14/35
38/70
631/378/2591
631/378/340
82/1
82/29
82/80
82/83
Amino Acid Sequence
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain research
Ca2+/calmodulin-dependent protein kinase II
Calcium channels
Calcium ions
Calcium signalling
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism
Cellular signal transduction
Chemical properties
Enzyme Activation - physiology
Female
Glutamic acid receptors
Glutamic acid receptors (ionotropic)
Kinases
Liquid phases
Liquid-Liquid Extraction - methods
Male
Membrane Proteins - analysis
Membrane Proteins - genetics
Membrane Proteins - metabolism
Memory
Mice
Microscopy
N-Methyl-D-aspartic acid receptors
Neural transmission
Neurobiology
Neurosciences
Phase separation
Phase transformations (Statistical physics)
Physiological aspects
Plasticity
Protein kinases
Proteins
Rats
Rats, Sprague-Dawley
Receptors
Receptors, AMPA - analysis
Receptors, AMPA - genetics
Receptors, AMPA - metabolism
Receptors, N-Methyl-D-Aspartate - analysis
Receptors, N-Methyl-D-Aspartate - genetics
Receptors, N-Methyl-D-Aspartate - metabolism
Science
Selective binding
Structure-function relationships
Synaptic plasticity
Synaptic transmission
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
title CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CaMKII%20activation%20persistently%20segregates%20postsynaptic%20proteins%20via%20liquid%20phase%20separation&rft.jtitle=Nature%20neuroscience&rft.au=Hosokawa,%20Tomohisa&rft.date=2021-06-01&rft.volume=24&rft.issue=6&rft.spage=777&rft.epage=785&rft.pages=777-785&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-021-00843-3&rft_dat=%3Cgale_proqu%3EA663934533%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536110308&rft_id=info:pmid/33927400&rft_galeid=A663934533&rfr_iscdi=true