CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation
Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2021-06, Vol.24 (6), p.777-785 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 785 |
---|---|
container_issue | 6 |
container_start_page | 777 |
container_title | Nature neuroscience |
container_volume | 24 |
creator | Hosokawa, Tomohisa Liu, Pin-Wu Cai, Qixu Ferreira, Joana S. Levet, Florian Butler, Corey Sibarita, Jean-Baptiste Choquet, Daniel Groc, Laurent Hosy, Eric Zhang, Mingjie Hayashi, Yasunori |
description | Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca
2+
is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca
2+
-induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.
The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation. |
doi_str_mv | 10.1038/s41593-021-00843-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2520882834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A663934533</galeid><sourcerecordid>A663934533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwBzigSFzoIcXfcY7VqpQVRUh8nDhYE2ccXGWT1HYq9t_j7RaqRQj5YGv8vK9m5i2Kl5ScUcL12yiobHhFGK0I0YJX_FFxTKVQFa2ZepzfpKkrxaQ6Kp7FeE0IqaVunhZHnDesFoQcF99X8PHDel2CTf4Wkp_GcsYQfUw4pmFbRuwD9pAwlvMUU9yOMCdvyzlMCf0Yy1sP5eBvFt-V8w-ImBUzhDun58UTB0PEF_f3SfHt3cXX1fvq6tPlenV-VVmpVao4slp1ounACe4AnXUNiLYTyC2wurUOpQaLVAHIrqWNbmXramhVrZFwx0-KN3vf3NTNgjGZjY8WhwFGnJZomGREa6a5yOjrv9DraQlj7i5TXNG8V6IfqB4GNH50Uwpgd6bmXCnecCE5z9TZP6h8Otx4O43ofK4fCE4PBJlJ-DP1sMRo1l8-H7Jsz9owxRjQmTn4DYStocTs0jf79E1O39ylb3aiV_fTLe0Guz-S33FngO-BmL_GHsPD-P-x_QVYH7qC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536110308</pqid></control><display><type>article</type><title>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Nature Journals Online</source><creator>Hosokawa, Tomohisa ; Liu, Pin-Wu ; Cai, Qixu ; Ferreira, Joana S. ; Levet, Florian ; Butler, Corey ; Sibarita, Jean-Baptiste ; Choquet, Daniel ; Groc, Laurent ; Hosy, Eric ; Zhang, Mingjie ; Hayashi, Yasunori</creator><creatorcontrib>Hosokawa, Tomohisa ; Liu, Pin-Wu ; Cai, Qixu ; Ferreira, Joana S. ; Levet, Florian ; Butler, Corey ; Sibarita, Jean-Baptiste ; Choquet, Daniel ; Groc, Laurent ; Hosy, Eric ; Zhang, Mingjie ; Hayashi, Yasunori</creatorcontrib><description>Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca
2+
is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca
2+
-induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.
The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-021-00843-3</identifier><identifier>PMID: 33927400</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/19 ; 14/35 ; 38/70 ; 631/378/2591 ; 631/378/340 ; 82/1 ; 82/29 ; 82/80 ; 82/83 ; Amino Acid Sequence ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain research ; Ca2+/calmodulin-dependent protein kinase II ; Calcium channels ; Calcium ions ; Calcium signalling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism ; Cellular signal transduction ; Chemical properties ; Enzyme Activation - physiology ; Female ; Glutamic acid receptors ; Glutamic acid receptors (ionotropic) ; Kinases ; Liquid phases ; Liquid-Liquid Extraction - methods ; Male ; Membrane Proteins - analysis ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Memory ; Mice ; Microscopy ; N-Methyl-D-aspartic acid receptors ; Neural transmission ; Neurobiology ; Neurosciences ; Phase separation ; Phase transformations (Statistical physics) ; Physiological aspects ; Plasticity ; Protein kinases ; Proteins ; Rats ; Rats, Sprague-Dawley ; Receptors ; Receptors, AMPA - analysis ; Receptors, AMPA - genetics ; Receptors, AMPA - metabolism ; Receptors, N-Methyl-D-Aspartate - analysis ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - metabolism ; Science ; Selective binding ; Structure-function relationships ; Synaptic plasticity ; Synaptic transmission ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Nature neuroscience, 2021-06, Vol.24 (6), p.777-785</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</citedby><cites>FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</cites><orcidid>0000-0002-4009-6225 ; 0000-0001-8053-2098 ; 0000-0003-4726-9763 ; 0000-0002-7560-3004 ; 0000-0001-9404-0190 ; 0000-0002-1049-8063 ; 0000-0002-4525-4261 ; 0000-0002-2479-5915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-021-00843-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-021-00843-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33927400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosokawa, Tomohisa</creatorcontrib><creatorcontrib>Liu, Pin-Wu</creatorcontrib><creatorcontrib>Cai, Qixu</creatorcontrib><creatorcontrib>Ferreira, Joana S.</creatorcontrib><creatorcontrib>Levet, Florian</creatorcontrib><creatorcontrib>Butler, Corey</creatorcontrib><creatorcontrib>Sibarita, Jean-Baptiste</creatorcontrib><creatorcontrib>Choquet, Daniel</creatorcontrib><creatorcontrib>Groc, Laurent</creatorcontrib><creatorcontrib>Hosy, Eric</creatorcontrib><creatorcontrib>Zhang, Mingjie</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><title>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca
2+
is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca
2+
-induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.
The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation.</description><subject>14/19</subject><subject>14/35</subject><subject>38/70</subject><subject>631/378/2591</subject><subject>631/378/340</subject><subject>82/1</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium channels</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</subject><subject>Cellular signal transduction</subject><subject>Chemical properties</subject><subject>Enzyme Activation - physiology</subject><subject>Female</subject><subject>Glutamic acid receptors</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Kinases</subject><subject>Liquid phases</subject><subject>Liquid-Liquid Extraction - methods</subject><subject>Male</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Memory</subject><subject>Mice</subject><subject>Microscopy</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Neural transmission</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Phase separation</subject><subject>Phase transformations (Statistical physics)</subject><subject>Physiological aspects</subject><subject>Plasticity</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Receptors, AMPA - analysis</subject><subject>Receptors, AMPA - genetics</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - analysis</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Science</subject><subject>Selective binding</subject><subject>Structure-function relationships</subject><subject>Synaptic plasticity</subject><subject>Synaptic transmission</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhiMEoqXwBzigSFzoIcXfcY7VqpQVRUh8nDhYE2ccXGWT1HYq9t_j7RaqRQj5YGv8vK9m5i2Kl5ScUcL12yiobHhFGK0I0YJX_FFxTKVQFa2ZepzfpKkrxaQ6Kp7FeE0IqaVunhZHnDesFoQcF99X8PHDel2CTf4Wkp_GcsYQfUw4pmFbRuwD9pAwlvMUU9yOMCdvyzlMCf0Yy1sP5eBvFt-V8w-ImBUzhDun58UTB0PEF_f3SfHt3cXX1fvq6tPlenV-VVmpVao4slp1ounACe4AnXUNiLYTyC2wurUOpQaLVAHIrqWNbmXramhVrZFwx0-KN3vf3NTNgjGZjY8WhwFGnJZomGREa6a5yOjrv9DraQlj7i5TXNG8V6IfqB4GNH50Uwpgd6bmXCnecCE5z9TZP6h8Otx4O43ofK4fCE4PBJlJ-DP1sMRo1l8-H7Jsz9owxRjQmTn4DYStocTs0jf79E1O39ylb3aiV_fTLe0Guz-S33FngO-BmL_GHsPD-P-x_QVYH7qC</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hosokawa, Tomohisa</creator><creator>Liu, Pin-Wu</creator><creator>Cai, Qixu</creator><creator>Ferreira, Joana S.</creator><creator>Levet, Florian</creator><creator>Butler, Corey</creator><creator>Sibarita, Jean-Baptiste</creator><creator>Choquet, Daniel</creator><creator>Groc, Laurent</creator><creator>Hosy, Eric</creator><creator>Zhang, Mingjie</creator><creator>Hayashi, Yasunori</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4009-6225</orcidid><orcidid>https://orcid.org/0000-0001-8053-2098</orcidid><orcidid>https://orcid.org/0000-0003-4726-9763</orcidid><orcidid>https://orcid.org/0000-0002-7560-3004</orcidid><orcidid>https://orcid.org/0000-0001-9404-0190</orcidid><orcidid>https://orcid.org/0000-0002-1049-8063</orcidid><orcidid>https://orcid.org/0000-0002-4525-4261</orcidid><orcidid>https://orcid.org/0000-0002-2479-5915</orcidid></search><sort><creationdate>20210601</creationdate><title>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</title><author>Hosokawa, Tomohisa ; Liu, Pin-Wu ; Cai, Qixu ; Ferreira, Joana S. ; Levet, Florian ; Butler, Corey ; Sibarita, Jean-Baptiste ; Choquet, Daniel ; Groc, Laurent ; Hosy, Eric ; Zhang, Mingjie ; Hayashi, Yasunori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-3e276d49daf43faefcf9a4bd4e3ca27bcfe58ace16aa5db198b5bf7ab678e03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/19</topic><topic>14/35</topic><topic>38/70</topic><topic>631/378/2591</topic><topic>631/378/340</topic><topic>82/1</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium channels</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</topic><topic>Cellular signal transduction</topic><topic>Chemical properties</topic><topic>Enzyme Activation - physiology</topic><topic>Female</topic><topic>Glutamic acid receptors</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Kinases</topic><topic>Liquid phases</topic><topic>Liquid-Liquid Extraction - methods</topic><topic>Male</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Memory</topic><topic>Mice</topic><topic>Microscopy</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Neural transmission</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Phase separation</topic><topic>Phase transformations (Statistical physics)</topic><topic>Physiological aspects</topic><topic>Plasticity</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Receptors, AMPA - analysis</topic><topic>Receptors, AMPA - genetics</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - analysis</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Science</topic><topic>Selective binding</topic><topic>Structure-function relationships</topic><topic>Synaptic plasticity</topic><topic>Synaptic transmission</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosokawa, Tomohisa</creatorcontrib><creatorcontrib>Liu, Pin-Wu</creatorcontrib><creatorcontrib>Cai, Qixu</creatorcontrib><creatorcontrib>Ferreira, Joana S.</creatorcontrib><creatorcontrib>Levet, Florian</creatorcontrib><creatorcontrib>Butler, Corey</creatorcontrib><creatorcontrib>Sibarita, Jean-Baptiste</creatorcontrib><creatorcontrib>Choquet, Daniel</creatorcontrib><creatorcontrib>Groc, Laurent</creatorcontrib><creatorcontrib>Hosy, Eric</creatorcontrib><creatorcontrib>Zhang, Mingjie</creatorcontrib><creatorcontrib>Hayashi, Yasunori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosokawa, Tomohisa</au><au>Liu, Pin-Wu</au><au>Cai, Qixu</au><au>Ferreira, Joana S.</au><au>Levet, Florian</au><au>Butler, Corey</au><au>Sibarita, Jean-Baptiste</au><au>Choquet, Daniel</au><au>Groc, Laurent</au><au>Hosy, Eric</au><au>Zhang, Mingjie</au><au>Hayashi, Yasunori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>777</spage><epage>785</epage><pages>777-785</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid–liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca
2+
is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca
2+
-induced liquid–liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.
The authors find that calcium signaling triggers liquid–liquid phase separation of CaMKII. This reorganizes the postsynaptic structure, acting as a potential mechanism to increase the efficacy of synaptic transmission during memory formation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33927400</pmid><doi>10.1038/s41593-021-00843-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4009-6225</orcidid><orcidid>https://orcid.org/0000-0001-8053-2098</orcidid><orcidid>https://orcid.org/0000-0003-4726-9763</orcidid><orcidid>https://orcid.org/0000-0002-7560-3004</orcidid><orcidid>https://orcid.org/0000-0001-9404-0190</orcidid><orcidid>https://orcid.org/0000-0002-1049-8063</orcidid><orcidid>https://orcid.org/0000-0002-4525-4261</orcidid><orcidid>https://orcid.org/0000-0002-2479-5915</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2021-06, Vol.24 (6), p.777-785 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_2520882834 |
source | MEDLINE; SpringerNature Journals; Nature Journals Online |
subjects | 14/19 14/35 38/70 631/378/2591 631/378/340 82/1 82/29 82/80 82/83 Amino Acid Sequence Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Brain research Ca2+/calmodulin-dependent protein kinase II Calcium channels Calcium ions Calcium signalling Calcium-Calmodulin-Dependent Protein Kinase Type 2 - analysis Calcium-Calmodulin-Dependent Protein Kinase Type 2 - genetics Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism Cellular signal transduction Chemical properties Enzyme Activation - physiology Female Glutamic acid receptors Glutamic acid receptors (ionotropic) Kinases Liquid phases Liquid-Liquid Extraction - methods Male Membrane Proteins - analysis Membrane Proteins - genetics Membrane Proteins - metabolism Memory Mice Microscopy N-Methyl-D-aspartic acid receptors Neural transmission Neurobiology Neurosciences Phase separation Phase transformations (Statistical physics) Physiological aspects Plasticity Protein kinases Proteins Rats Rats, Sprague-Dawley Receptors Receptors, AMPA - analysis Receptors, AMPA - genetics Receptors, AMPA - metabolism Receptors, N-Methyl-D-Aspartate - analysis Receptors, N-Methyl-D-Aspartate - genetics Receptors, N-Methyl-D-Aspartate - metabolism Science Selective binding Structure-function relationships Synaptic plasticity Synaptic transmission α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CaMKII%20activation%20persistently%20segregates%20postsynaptic%20proteins%20via%20liquid%20phase%20separation&rft.jtitle=Nature%20neuroscience&rft.au=Hosokawa,%20Tomohisa&rft.date=2021-06-01&rft.volume=24&rft.issue=6&rft.spage=777&rft.epage=785&rft.pages=777-785&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-021-00843-3&rft_dat=%3Cgale_proqu%3EA663934533%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536110308&rft_id=info:pmid/33927400&rft_galeid=A663934533&rfr_iscdi=true |