Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2021-04, Vol.14 (4), p.357, Article 357
Hauptverfasser: Zaki, Magdi E. A., Al-Hussain, Sami A., Masand, Vijay H., Akasapu, Siddhartha, Bajaj, Sumit O., El-Sayed, Nahed N. E., Ghosh, Arabinda, Lewaa, Israa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 357
container_title Pharmaceuticals (Basel, Switzerland)
container_volume 14
creator Zaki, Magdi E. A.
Al-Hussain, Sami A.
Masand, Vijay H.
Akasapu, Siddhartha
Bajaj, Sumit O.
El-Sayed, Nahed N. E.
Ghosh, Arabinda
Lewaa, Israa
description Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model with acceptable statistical performance (R-2 = 0.898, Q(2)loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp(2)-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole-indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.
doi_str_mv 10.3390/ph14040357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2520864935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_397d20ef4e644a36999074121dcf9e4e</doaj_id><sourcerecordid>2550211463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-a57200296146c684d751957a2979fb8d764d4755d3b1f344e9c1b770bca0c7d23</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEoqVw4QGQJS4ICPhvHF8qLYHCSkUIlvZqObazdUnsxU5A-yS8Lt7dsmw5cfL4m58_j8dTFI8RfEWIgK9XV4hCCgnjd4pjRDEta0z53YP4qHiQ0jWEjCOK7hdH-RimRLDj4tfcWD-6zmk1uuBB6MAs78vF7MuibMJliUEThlWYvEmgi2EAZyEYcJGcX4LPmSrfqGQNuHRxnFQPFjpa63PyJfgYequnXkXwNuhvW0l5cyivvRqcTmDhhixs75951a-TSw-Le53qk310s54UF2fvvjYfyvNP7-fN7LzUlOOxVIxjCLGoEK10VVPDGRKMKyy46Nra8IoayhkzpEUdodQKjVrOYasV1NxgclLMd74mqGu5im5QcS2DcnIrhLiUKo5O91YSkQ9A21FbUapIJYSAnCKMjO6EpTZ7ne68VlM7WKNzY6Pqb5neznh3JZfhh6whhxChbPDsxiCG75NNoxxc0rbvlbdhShIzDOuKCsIy-vQf9DpMMTdvQzGIUW4IydTzHaVjSCnabl8MgnIzO_Lv7GT4yWH5e_TPsGTgxQ74advQJe2s13aPQQgrSijiKEdw85j6_-nGjdv_b_KgjeQ3Jhremw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550211463</pqid></control><display><type>article</type><title>Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zaki, Magdi E. A. ; Al-Hussain, Sami A. ; Masand, Vijay H. ; Akasapu, Siddhartha ; Bajaj, Sumit O. ; El-Sayed, Nahed N. E. ; Ghosh, Arabinda ; Lewaa, Israa</creator><creatorcontrib>Zaki, Magdi E. A. ; Al-Hussain, Sami A. ; Masand, Vijay H. ; Akasapu, Siddhartha ; Bajaj, Sumit O. ; El-Sayed, Nahed N. E. ; Ghosh, Arabinda ; Lewaa, Israa</creatorcontrib><description>Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model with acceptable statistical performance (R-2 = 0.898, Q(2)loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp(2)-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole-indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.</description><identifier>ISSN: 1424-8247</identifier><identifier>EISSN: 1424-8247</identifier><identifier>DOI: 10.3390/ph14040357</identifier><identifier>PMID: 33924395</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Chemistry, Medicinal ; Coronaviruses ; COVID-19 ; Disease transmission ; Enzymes ; Infections ; Life Sciences &amp; Biomedicine ; Medical research ; molecular docking ; Pharmacology &amp; Pharmacy ; Public health ; QSAR ; QSAR-based virtual screening ; Respiratory diseases ; SARS-CoV ; SARS-CoV-2 ; Science &amp; Technology ; Severe acute respiratory syndrome coronavirus 2 ; Viruses</subject><ispartof>Pharmaceuticals (Basel, Switzerland), 2021-04, Vol.14 (4), p.357, Article 357</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000643417100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c472t-a57200296146c684d751957a2979fb8d764d4755d3b1f344e9c1b770bca0c7d23</citedby><cites>FETCH-LOGICAL-c472t-a57200296146c684d751957a2979fb8d764d4755d3b1f344e9c1b770bca0c7d23</cites><orcidid>0000-0001-9771-8956 ; 0000-0002-3891-5949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33924395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaki, Magdi E. A.</creatorcontrib><creatorcontrib>Al-Hussain, Sami A.</creatorcontrib><creatorcontrib>Masand, Vijay H.</creatorcontrib><creatorcontrib>Akasapu, Siddhartha</creatorcontrib><creatorcontrib>Bajaj, Sumit O.</creatorcontrib><creatorcontrib>El-Sayed, Nahed N. E.</creatorcontrib><creatorcontrib>Ghosh, Arabinda</creatorcontrib><creatorcontrib>Lewaa, Israa</creatorcontrib><title>Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis</title><title>Pharmaceuticals (Basel, Switzerland)</title><addtitle>PHARMACEUTICALS-BASE</addtitle><addtitle>Pharmaceuticals (Basel)</addtitle><description>Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model with acceptable statistical performance (R-2 = 0.898, Q(2)loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp(2)-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole-indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.</description><subject>Chemistry, Medicinal</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Enzymes</subject><subject>Infections</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Medical research</subject><subject>molecular docking</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>Public health</subject><subject>QSAR</subject><subject>QSAR-based virtual screening</subject><subject>Respiratory diseases</subject><subject>SARS-CoV</subject><subject>SARS-CoV-2</subject><subject>Science &amp; Technology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viruses</subject><issn>1424-8247</issn><issn>1424-8247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9u1DAQxiMEoqVw4QGQJS4ICPhvHF8qLYHCSkUIlvZqObazdUnsxU5A-yS8Lt7dsmw5cfL4m58_j8dTFI8RfEWIgK9XV4hCCgnjd4pjRDEta0z53YP4qHiQ0jWEjCOK7hdH-RimRLDj4tfcWD-6zmk1uuBB6MAs78vF7MuibMJliUEThlWYvEmgi2EAZyEYcJGcX4LPmSrfqGQNuHRxnFQPFjpa63PyJfgYequnXkXwNuhvW0l5cyivvRqcTmDhhixs75951a-TSw-Le53qk310s54UF2fvvjYfyvNP7-fN7LzUlOOxVIxjCLGoEK10VVPDGRKMKyy46Nra8IoayhkzpEUdodQKjVrOYasV1NxgclLMd74mqGu5im5QcS2DcnIrhLiUKo5O91YSkQ9A21FbUapIJYSAnCKMjO6EpTZ7ne68VlM7WKNzY6Pqb5neznh3JZfhh6whhxChbPDsxiCG75NNoxxc0rbvlbdhShIzDOuKCsIy-vQf9DpMMTdvQzGIUW4IydTzHaVjSCnabl8MgnIzO_Lv7GT4yWH5e_TPsGTgxQ74advQJe2s13aPQQgrSijiKEdw85j6_-nGjdv_b_KgjeQ3Jhremw</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Zaki, Magdi E. A.</creator><creator>Al-Hussain, Sami A.</creator><creator>Masand, Vijay H.</creator><creator>Akasapu, Siddhartha</creator><creator>Bajaj, Sumit O.</creator><creator>El-Sayed, Nahed N. E.</creator><creator>Ghosh, Arabinda</creator><creator>Lewaa, Israa</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9771-8956</orcidid><orcidid>https://orcid.org/0000-0002-3891-5949</orcidid></search><sort><creationdate>20210413</creationdate><title>Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis</title><author>Zaki, Magdi E. A. ; Al-Hussain, Sami A. ; Masand, Vijay H. ; Akasapu, Siddhartha ; Bajaj, Sumit O. ; El-Sayed, Nahed N. E. ; Ghosh, Arabinda ; Lewaa, Israa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-a57200296146c684d751957a2979fb8d764d4755d3b1f344e9c1b770bca0c7d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry, Medicinal</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Enzymes</topic><topic>Infections</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Medical research</topic><topic>molecular docking</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>Public health</topic><topic>QSAR</topic><topic>QSAR-based virtual screening</topic><topic>Respiratory diseases</topic><topic>SARS-CoV</topic><topic>SARS-CoV-2</topic><topic>Science &amp; Technology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaki, Magdi E. A.</creatorcontrib><creatorcontrib>Al-Hussain, Sami A.</creatorcontrib><creatorcontrib>Masand, Vijay H.</creatorcontrib><creatorcontrib>Akasapu, Siddhartha</creatorcontrib><creatorcontrib>Bajaj, Sumit O.</creatorcontrib><creatorcontrib>El-Sayed, Nahed N. E.</creatorcontrib><creatorcontrib>Ghosh, Arabinda</creatorcontrib><creatorcontrib>Lewaa, Israa</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Pharmaceuticals (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaki, Magdi E. A.</au><au>Al-Hussain, Sami A.</au><au>Masand, Vijay H.</au><au>Akasapu, Siddhartha</au><au>Bajaj, Sumit O.</au><au>El-Sayed, Nahed N. E.</au><au>Ghosh, Arabinda</au><au>Lewaa, Israa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis</atitle><jtitle>Pharmaceuticals (Basel, Switzerland)</jtitle><stitle>PHARMACEUTICALS-BASE</stitle><addtitle>Pharmaceuticals (Basel)</addtitle><date>2021-04-13</date><risdate>2021</risdate><volume>14</volume><issue>4</issue><spage>357</spage><pages>357-</pages><artnum>357</artnum><issn>1424-8247</issn><eissn>1424-8247</eissn><abstract>Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model with acceptable statistical performance (R-2 = 0.898, Q(2)loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp(2)-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole-indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33924395</pmid><doi>10.3390/ph14040357</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9771-8956</orcidid><orcidid>https://orcid.org/0000-0002-3891-5949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8247
ispartof Pharmaceuticals (Basel, Switzerland), 2021-04, Vol.14 (4), p.357, Article 357
issn 1424-8247
1424-8247
language eng
recordid cdi_proquest_miscellaneous_2520864935
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemistry, Medicinal
Coronaviruses
COVID-19
Disease transmission
Enzymes
Infections
Life Sciences & Biomedicine
Medical research
molecular docking
Pharmacology & Pharmacy
Public health
QSAR
QSAR-based virtual screening
Respiratory diseases
SARS-CoV
SARS-CoV-2
Science & Technology
Severe acute respiratory syndrome coronavirus 2
Viruses
title Identification of Anti-SARS-CoV-2 Compounds from Food Using QSAR-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Anti-SARS-CoV-2%20Compounds%20from%20Food%20Using%20QSAR-Based%20Virtual%20Screening,%20Molecular%20Docking,%20and%20Molecular%20Dynamics%20Simulation%20Analysis&rft.jtitle=Pharmaceuticals%20(Basel,%20Switzerland)&rft.au=Zaki,%20Magdi%20E.%20A.&rft.date=2021-04-13&rft.volume=14&rft.issue=4&rft.spage=357&rft.pages=357-&rft.artnum=357&rft.issn=1424-8247&rft.eissn=1424-8247&rft_id=info:doi/10.3390/ph14040357&rft_dat=%3Cproquest_cross%3E2550211463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550211463&rft_id=info:pmid/33924395&rft_doaj_id=oai_doaj_org_article_397d20ef4e644a36999074121dcf9e4e&rfr_iscdi=true