Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses

Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2021-11, Vol.26 (11), p.6253-6268
Hauptverfasser: Patzke, Christopher, Dai, Jinye, Brockmann, Marisa M., Sun, Zijun, Fenske, Pascal, Rosenmund, Christian, Südhof, Thomas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6268
container_issue 11
container_start_page 6253
container_title Molecular psychiatry
container_volume 26
creator Patzke, Christopher
Dai, Jinye
Brockmann, Marisa M.
Sun, Zijun
Fenske, Pascal
Rosenmund, Christian
Südhof, Thomas C.
description Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca 2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.
doi_str_mv 10.1038/s41380-021-01095-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2520855629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691095240</galeid><sourcerecordid>A691095240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxQdRbK1-ARcy4MbN1PyfybI81AoFN7oOSebmmTKTPJNM4X37ZpzXFkUki1zu_Z3LuZymeYvRJUZ0-JgZpgPqEMEdwkjyDj1rzjHrRcd5PzyvNeWyY3hgZ82rnG8RWof8ZXNGqaS4p_S8KTsdgjY-RD-2CSwcSkyttsXf6eJjqOVSYDq2PtgEOkNu8zHoQ_G2vYPs7QRtWGYDKbfm-CgM-w3LPuQqbX8usw6nFuTXzQunpwxvTv9F8-Pzp--76-7m25evu6ubzjJGSoe1wQYLS4Vz2BJdzddBjwZU_Us5Cjk6QQQwTUfCRW80Q8ZxYxkZqWWOXjQftr2HFH8tkIuafbYwTTpAXLIinKCBc0FkRd__hd7GJYXqThGBpcAYE_5E7fUEygcXS9J2XaquhFwzIAxV6vIfVH0jzN7GAM7X_h8CsglsijkncOqQ_KzTUWGk1qjVFrWqUavfUatV9O7keDEzjI-Sh2wrQDcg11HYQ3o66T9r7wExaLRV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619611125</pqid></control><display><type>article</type><title>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Patzke, Christopher ; Dai, Jinye ; Brockmann, Marisa M. ; Sun, Zijun ; Fenske, Pascal ; Rosenmund, Christian ; Südhof, Thomas C.</creator><creatorcontrib>Patzke, Christopher ; Dai, Jinye ; Brockmann, Marisa M. ; Sun, Zijun ; Fenske, Pascal ; Rosenmund, Christian ; Südhof, Thomas C.</creatorcontrib><description>Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca 2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-021-01095-0</identifier><identifier>PMID: 33931733</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/106 ; 13/95 ; 14 ; 14/19 ; 14/28 ; 38 ; 42/41 ; 631/378 ; 631/532 ; 692/699/476/5 ; Animals ; Behavioral Sciences ; Biological Psychology ; Calcium channels ; Cannabinoid CB1 receptors ; Cannabinoids ; Cannabinoids - pharmacology ; Cannabis ; Cell receptors ; Cyclic AMP ; Drug abuse ; G protein-coupled receptors ; Health aspects ; Humans ; Medicine ; Medicine &amp; Public Health ; Mice ; Nerve endings ; Neuromodulation ; Neurosciences ; Neurotransmission ; Neurotransmitter release ; Pharmacotherapy ; Phosphorylation ; Presynaptic plasticity ; Psychiatry ; Psychological aspects ; Receptor mechanisms ; Receptors, Cannabinoid ; Synapses ; Synapses - physiology ; Synapsin ; Synapsins ; Synaptic Transmission - physiology ; Synaptic Vesicles</subject><ispartof>Molecular psychiatry, 2021-11, Vol.26 (11), p.6253-6268</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</citedby><cites>FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</cites><orcidid>0000-0003-4709-8984 ; 0000-0001-7293-8936 ; 0000-0002-1386-5359 ; 0000-0001-5386-5495 ; 0000-0002-3905-2444 ; 0000-0002-8497-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-021-01095-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-021-01095-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33931733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patzke, Christopher</creatorcontrib><creatorcontrib>Dai, Jinye</creatorcontrib><creatorcontrib>Brockmann, Marisa M.</creatorcontrib><creatorcontrib>Sun, Zijun</creatorcontrib><creatorcontrib>Fenske, Pascal</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><title>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca 2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.</description><subject>13/100</subject><subject>13/106</subject><subject>13/95</subject><subject>14</subject><subject>14/19</subject><subject>14/28</subject><subject>38</subject><subject>42/41</subject><subject>631/378</subject><subject>631/532</subject><subject>692/699/476/5</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Calcium channels</subject><subject>Cannabinoid CB1 receptors</subject><subject>Cannabinoids</subject><subject>Cannabinoids - pharmacology</subject><subject>Cannabis</subject><subject>Cell receptors</subject><subject>Cyclic AMP</subject><subject>Drug abuse</subject><subject>G protein-coupled receptors</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Nerve endings</subject><subject>Neuromodulation</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Neurotransmitter release</subject><subject>Pharmacotherapy</subject><subject>Phosphorylation</subject><subject>Presynaptic plasticity</subject><subject>Psychiatry</subject><subject>Psychological aspects</subject><subject>Receptor mechanisms</subject><subject>Receptors, Cannabinoid</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synapsin</subject><subject>Synapsins</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Vesicles</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rFTEUxQdRbK1-ARcy4MbN1PyfybI81AoFN7oOSebmmTKTPJNM4X37ZpzXFkUki1zu_Z3LuZymeYvRJUZ0-JgZpgPqEMEdwkjyDj1rzjHrRcd5PzyvNeWyY3hgZ82rnG8RWof8ZXNGqaS4p_S8KTsdgjY-RD-2CSwcSkyttsXf6eJjqOVSYDq2PtgEOkNu8zHoQ_G2vYPs7QRtWGYDKbfm-CgM-w3LPuQqbX8usw6nFuTXzQunpwxvTv9F8-Pzp--76-7m25evu6ubzjJGSoe1wQYLS4Vz2BJdzddBjwZU_Us5Cjk6QQQwTUfCRW80Q8ZxYxkZqWWOXjQftr2HFH8tkIuafbYwTTpAXLIinKCBc0FkRd__hd7GJYXqThGBpcAYE_5E7fUEygcXS9J2XaquhFwzIAxV6vIfVH0jzN7GAM7X_h8CsglsijkncOqQ_KzTUWGk1qjVFrWqUavfUatV9O7keDEzjI-Sh2wrQDcg11HYQ3o66T9r7wExaLRV</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Patzke, Christopher</creator><creator>Dai, Jinye</creator><creator>Brockmann, Marisa M.</creator><creator>Sun, Zijun</creator><creator>Fenske, Pascal</creator><creator>Rosenmund, Christian</creator><creator>Südhof, Thomas C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4709-8984</orcidid><orcidid>https://orcid.org/0000-0001-7293-8936</orcidid><orcidid>https://orcid.org/0000-0002-1386-5359</orcidid><orcidid>https://orcid.org/0000-0001-5386-5495</orcidid><orcidid>https://orcid.org/0000-0002-3905-2444</orcidid><orcidid>https://orcid.org/0000-0002-8497-3154</orcidid></search><sort><creationdate>20211101</creationdate><title>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</title><author>Patzke, Christopher ; Dai, Jinye ; Brockmann, Marisa M. ; Sun, Zijun ; Fenske, Pascal ; Rosenmund, Christian ; Südhof, Thomas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/100</topic><topic>13/106</topic><topic>13/95</topic><topic>14</topic><topic>14/19</topic><topic>14/28</topic><topic>38</topic><topic>42/41</topic><topic>631/378</topic><topic>631/532</topic><topic>692/699/476/5</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Calcium channels</topic><topic>Cannabinoid CB1 receptors</topic><topic>Cannabinoids</topic><topic>Cannabinoids - pharmacology</topic><topic>Cannabis</topic><topic>Cell receptors</topic><topic>Cyclic AMP</topic><topic>Drug abuse</topic><topic>G protein-coupled receptors</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Nerve endings</topic><topic>Neuromodulation</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Neurotransmitter release</topic><topic>Pharmacotherapy</topic><topic>Phosphorylation</topic><topic>Presynaptic plasticity</topic><topic>Psychiatry</topic><topic>Psychological aspects</topic><topic>Receptor mechanisms</topic><topic>Receptors, Cannabinoid</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synapsin</topic><topic>Synapsins</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patzke, Christopher</creatorcontrib><creatorcontrib>Dai, Jinye</creatorcontrib><creatorcontrib>Brockmann, Marisa M.</creatorcontrib><creatorcontrib>Sun, Zijun</creatorcontrib><creatorcontrib>Fenske, Pascal</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patzke, Christopher</au><au>Dai, Jinye</au><au>Brockmann, Marisa M.</au><au>Sun, Zijun</au><au>Fenske, Pascal</au><au>Rosenmund, Christian</au><au>Südhof, Thomas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>26</volume><issue>11</issue><spage>6253</spage><epage>6268</epage><pages>6253-6268</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca 2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33931733</pmid><doi>10.1038/s41380-021-01095-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4709-8984</orcidid><orcidid>https://orcid.org/0000-0001-7293-8936</orcidid><orcidid>https://orcid.org/0000-0002-1386-5359</orcidid><orcidid>https://orcid.org/0000-0001-5386-5495</orcidid><orcidid>https://orcid.org/0000-0002-3905-2444</orcidid><orcidid>https://orcid.org/0000-0002-8497-3154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4184
ispartof Molecular psychiatry, 2021-11, Vol.26 (11), p.6253-6268
issn 1359-4184
1476-5578
language eng
recordid cdi_proquest_miscellaneous_2520855629
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 13/100
13/106
13/95
14
14/19
14/28
38
42/41
631/378
631/532
692/699/476/5
Animals
Behavioral Sciences
Biological Psychology
Calcium channels
Cannabinoid CB1 receptors
Cannabinoids
Cannabinoids - pharmacology
Cannabis
Cell receptors
Cyclic AMP
Drug abuse
G protein-coupled receptors
Health aspects
Humans
Medicine
Medicine & Public Health
Mice
Nerve endings
Neuromodulation
Neurosciences
Neurotransmission
Neurotransmitter release
Pharmacotherapy
Phosphorylation
Presynaptic plasticity
Psychiatry
Psychological aspects
Receptor mechanisms
Receptors, Cannabinoid
Synapses
Synapses - physiology
Synapsin
Synapsins
Synaptic Transmission - physiology
Synaptic Vesicles
title Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabinoid%20receptor%20activation%20acutely%20increases%20synaptic%20vesicle%20numbers%20by%20activating%20synapsins%20in%20human%20synapses&rft.jtitle=Molecular%20psychiatry&rft.au=Patzke,%20Christopher&rft.date=2021-11-01&rft.volume=26&rft.issue=11&rft.spage=6253&rft.epage=6268&rft.pages=6253-6268&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-021-01095-0&rft_dat=%3Cgale_proqu%3EA691095240%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619611125&rft_id=info:pmid/33931733&rft_galeid=A691095240&rfr_iscdi=true