Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses
Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation dec...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2021-11, Vol.26 (11), p.6253-6268 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6268 |
---|---|
container_issue | 11 |
container_start_page | 6253 |
container_title | Molecular psychiatry |
container_volume | 26 |
creator | Patzke, Christopher Dai, Jinye Brockmann, Marisa M. Sun, Zijun Fenske, Pascal Rosenmund, Christian Südhof, Thomas C. |
description | Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca
2+
channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses. |
doi_str_mv | 10.1038/s41380-021-01095-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2520855629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A691095240</galeid><sourcerecordid>A691095240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxQdRbK1-ARcy4MbN1PyfybI81AoFN7oOSebmmTKTPJNM4X37ZpzXFkUki1zu_Z3LuZymeYvRJUZ0-JgZpgPqEMEdwkjyDj1rzjHrRcd5PzyvNeWyY3hgZ82rnG8RWof8ZXNGqaS4p_S8KTsdgjY-RD-2CSwcSkyttsXf6eJjqOVSYDq2PtgEOkNu8zHoQ_G2vYPs7QRtWGYDKbfm-CgM-w3LPuQqbX8usw6nFuTXzQunpwxvTv9F8-Pzp--76-7m25evu6ubzjJGSoe1wQYLS4Vz2BJdzddBjwZU_Us5Cjk6QQQwTUfCRW80Q8ZxYxkZqWWOXjQftr2HFH8tkIuafbYwTTpAXLIinKCBc0FkRd__hd7GJYXqThGBpcAYE_5E7fUEygcXS9J2XaquhFwzIAxV6vIfVH0jzN7GAM7X_h8CsglsijkncOqQ_KzTUWGk1qjVFrWqUavfUatV9O7keDEzjI-Sh2wrQDcg11HYQ3o66T9r7wExaLRV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619611125</pqid></control><display><type>article</type><title>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Patzke, Christopher ; Dai, Jinye ; Brockmann, Marisa M. ; Sun, Zijun ; Fenske, Pascal ; Rosenmund, Christian ; Südhof, Thomas C.</creator><creatorcontrib>Patzke, Christopher ; Dai, Jinye ; Brockmann, Marisa M. ; Sun, Zijun ; Fenske, Pascal ; Rosenmund, Christian ; Südhof, Thomas C.</creatorcontrib><description>Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca
2+
channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-021-01095-0</identifier><identifier>PMID: 33931733</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/106 ; 13/95 ; 14 ; 14/19 ; 14/28 ; 38 ; 42/41 ; 631/378 ; 631/532 ; 692/699/476/5 ; Animals ; Behavioral Sciences ; Biological Psychology ; Calcium channels ; Cannabinoid CB1 receptors ; Cannabinoids ; Cannabinoids - pharmacology ; Cannabis ; Cell receptors ; Cyclic AMP ; Drug abuse ; G protein-coupled receptors ; Health aspects ; Humans ; Medicine ; Medicine & Public Health ; Mice ; Nerve endings ; Neuromodulation ; Neurosciences ; Neurotransmission ; Neurotransmitter release ; Pharmacotherapy ; Phosphorylation ; Presynaptic plasticity ; Psychiatry ; Psychological aspects ; Receptor mechanisms ; Receptors, Cannabinoid ; Synapses ; Synapses - physiology ; Synapsin ; Synapsins ; Synaptic Transmission - physiology ; Synaptic Vesicles</subject><ispartof>Molecular psychiatry, 2021-11, Vol.26 (11), p.6253-6268</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</citedby><cites>FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</cites><orcidid>0000-0003-4709-8984 ; 0000-0001-7293-8936 ; 0000-0002-1386-5359 ; 0000-0001-5386-5495 ; 0000-0002-3905-2444 ; 0000-0002-8497-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-021-01095-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-021-01095-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33931733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patzke, Christopher</creatorcontrib><creatorcontrib>Dai, Jinye</creatorcontrib><creatorcontrib>Brockmann, Marisa M.</creatorcontrib><creatorcontrib>Sun, Zijun</creatorcontrib><creatorcontrib>Fenske, Pascal</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><title>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca
2+
channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.</description><subject>13/100</subject><subject>13/106</subject><subject>13/95</subject><subject>14</subject><subject>14/19</subject><subject>14/28</subject><subject>38</subject><subject>42/41</subject><subject>631/378</subject><subject>631/532</subject><subject>692/699/476/5</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Calcium channels</subject><subject>Cannabinoid CB1 receptors</subject><subject>Cannabinoids</subject><subject>Cannabinoids - pharmacology</subject><subject>Cannabis</subject><subject>Cell receptors</subject><subject>Cyclic AMP</subject><subject>Drug abuse</subject><subject>G protein-coupled receptors</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Nerve endings</subject><subject>Neuromodulation</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Neurotransmitter release</subject><subject>Pharmacotherapy</subject><subject>Phosphorylation</subject><subject>Presynaptic plasticity</subject><subject>Psychiatry</subject><subject>Psychological aspects</subject><subject>Receptor mechanisms</subject><subject>Receptors, Cannabinoid</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synapsin</subject><subject>Synapsins</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Vesicles</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rFTEUxQdRbK1-ARcy4MbN1PyfybI81AoFN7oOSebmmTKTPJNM4X37ZpzXFkUki1zu_Z3LuZymeYvRJUZ0-JgZpgPqEMEdwkjyDj1rzjHrRcd5PzyvNeWyY3hgZ82rnG8RWof8ZXNGqaS4p_S8KTsdgjY-RD-2CSwcSkyttsXf6eJjqOVSYDq2PtgEOkNu8zHoQ_G2vYPs7QRtWGYDKbfm-CgM-w3LPuQqbX8usw6nFuTXzQunpwxvTv9F8-Pzp--76-7m25evu6ubzjJGSoe1wQYLS4Vz2BJdzddBjwZU_Us5Cjk6QQQwTUfCRW80Q8ZxYxkZqWWOXjQftr2HFH8tkIuafbYwTTpAXLIinKCBc0FkRd__hd7GJYXqThGBpcAYE_5E7fUEygcXS9J2XaquhFwzIAxV6vIfVH0jzN7GAM7X_h8CsglsijkncOqQ_KzTUWGk1qjVFrWqUavfUatV9O7keDEzjI-Sh2wrQDcg11HYQ3o66T9r7wExaLRV</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Patzke, Christopher</creator><creator>Dai, Jinye</creator><creator>Brockmann, Marisa M.</creator><creator>Sun, Zijun</creator><creator>Fenske, Pascal</creator><creator>Rosenmund, Christian</creator><creator>Südhof, Thomas C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4709-8984</orcidid><orcidid>https://orcid.org/0000-0001-7293-8936</orcidid><orcidid>https://orcid.org/0000-0002-1386-5359</orcidid><orcidid>https://orcid.org/0000-0001-5386-5495</orcidid><orcidid>https://orcid.org/0000-0002-3905-2444</orcidid><orcidid>https://orcid.org/0000-0002-8497-3154</orcidid></search><sort><creationdate>20211101</creationdate><title>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</title><author>Patzke, Christopher ; Dai, Jinye ; Brockmann, Marisa M. ; Sun, Zijun ; Fenske, Pascal ; Rosenmund, Christian ; Südhof, Thomas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-1ab1b16c36ff1c2a476c44708033999d69df626e4a3d2567ba40bf5bc42d3c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/100</topic><topic>13/106</topic><topic>13/95</topic><topic>14</topic><topic>14/19</topic><topic>14/28</topic><topic>38</topic><topic>42/41</topic><topic>631/378</topic><topic>631/532</topic><topic>692/699/476/5</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Calcium channels</topic><topic>Cannabinoid CB1 receptors</topic><topic>Cannabinoids</topic><topic>Cannabinoids - pharmacology</topic><topic>Cannabis</topic><topic>Cell receptors</topic><topic>Cyclic AMP</topic><topic>Drug abuse</topic><topic>G protein-coupled receptors</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Nerve endings</topic><topic>Neuromodulation</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Neurotransmitter release</topic><topic>Pharmacotherapy</topic><topic>Phosphorylation</topic><topic>Presynaptic plasticity</topic><topic>Psychiatry</topic><topic>Psychological aspects</topic><topic>Receptor mechanisms</topic><topic>Receptors, Cannabinoid</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synapsin</topic><topic>Synapsins</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patzke, Christopher</creatorcontrib><creatorcontrib>Dai, Jinye</creatorcontrib><creatorcontrib>Brockmann, Marisa M.</creatorcontrib><creatorcontrib>Sun, Zijun</creatorcontrib><creatorcontrib>Fenske, Pascal</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patzke, Christopher</au><au>Dai, Jinye</au><au>Brockmann, Marisa M.</au><au>Sun, Zijun</au><au>Fenske, Pascal</au><au>Rosenmund, Christian</au><au>Südhof, Thomas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>26</volume><issue>11</issue><spage>6253</spage><epage>6268</epage><pages>6253-6268</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca
2+
channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33931733</pmid><doi>10.1038/s41380-021-01095-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4709-8984</orcidid><orcidid>https://orcid.org/0000-0001-7293-8936</orcidid><orcidid>https://orcid.org/0000-0002-1386-5359</orcidid><orcidid>https://orcid.org/0000-0001-5386-5495</orcidid><orcidid>https://orcid.org/0000-0002-3905-2444</orcidid><orcidid>https://orcid.org/0000-0002-8497-3154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2021-11, Vol.26 (11), p.6253-6268 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_proquest_miscellaneous_2520855629 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/100 13/106 13/95 14 14/19 14/28 38 42/41 631/378 631/532 692/699/476/5 Animals Behavioral Sciences Biological Psychology Calcium channels Cannabinoid CB1 receptors Cannabinoids Cannabinoids - pharmacology Cannabis Cell receptors Cyclic AMP Drug abuse G protein-coupled receptors Health aspects Humans Medicine Medicine & Public Health Mice Nerve endings Neuromodulation Neurosciences Neurotransmission Neurotransmitter release Pharmacotherapy Phosphorylation Presynaptic plasticity Psychiatry Psychological aspects Receptor mechanisms Receptors, Cannabinoid Synapses Synapses - physiology Synapsin Synapsins Synaptic Transmission - physiology Synaptic Vesicles |
title | Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabinoid%20receptor%20activation%20acutely%20increases%20synaptic%20vesicle%20numbers%20by%20activating%20synapsins%20in%20human%20synapses&rft.jtitle=Molecular%20psychiatry&rft.au=Patzke,%20Christopher&rft.date=2021-11-01&rft.volume=26&rft.issue=11&rft.spage=6253&rft.epage=6268&rft.pages=6253-6268&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-021-01095-0&rft_dat=%3Cgale_proqu%3EA691095240%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619611125&rft_id=info:pmid/33931733&rft_galeid=A691095240&rfr_iscdi=true |