Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO2 Electroreduction to Multicarbon Products

Copper is currently the material with the most promise as catalyst to drive carbon dioxide (CO2) electroreduction to produce value-added multicarbon (C2+) compounds. However, a copper catalyst on a carbon-based gas diffusion layer electrode often has poor stabilityespecially when performing at high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-06, Vol.143 (21), p.8011-8021
Hauptverfasser: Niu, Zhuang-Zhuang, Gao, Fei-Yue, Zhang, Xiao-Long, Yang, Peng-Peng, Liu, Ren, Chi, Li-Ping, Wu, Zhi-Zheng, Qin, Shuai, Yu, Xingxing, Gao, Min-Rui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8021
container_issue 21
container_start_page 8011
container_title Journal of the American Chemical Society
container_volume 143
creator Niu, Zhuang-Zhuang
Gao, Fei-Yue
Zhang, Xiao-Long
Yang, Peng-Peng
Liu, Ren
Chi, Li-Ping
Wu, Zhi-Zheng
Qin, Shuai
Yu, Xingxing
Gao, Min-Rui
description Copper is currently the material with the most promise as catalyst to drive carbon dioxide (CO2) electroreduction to produce value-added multicarbon (C2+) compounds. However, a copper catalyst on a carbon-based gas diffusion layer electrode often has poor stabilityespecially when performing at high current densitiesowing to electrolyte flooding caused by the hydrophobicity decrease of the gas diffusion layer during operation. Here, we report a bioinspired copper catalyst on a gas diffusion layer that mimics the unique hierarchical structuring of Setaria’s hydrophobic leaves. This hierarchical copper structure endows the CO2 reduction electrode with sufficient hydrophobicity to build a robust gas–liquid–solid triple-phase boundary, which can not only trap more CO2 close to the active copper surface but also effectively resist electrolyte flooding even under high-rate operation. We consequently achieved a high C2+ production rate of 255 ± 5.7 mA cm–2 with a 64 ± 1.4% faradaic efficiency, as well as outstanding operational stability at 300 mA cm–2 over 45 h in a flow reactor, largely outperforming its wettable copper counterparts.
doi_str_mv 10.1021/jacs.1c01190
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519812479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519812479</sourcerecordid><originalsourceid>FETCH-LOGICAL-a221t-56e8600968c290aee9a5a461fcde5950979e15b2937dfb6a3fa996be61adcd6d3</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoOKd3PkAuvelM0jVtLmVsdrAxEb0uaXK6ZtSmJimyN_CxzXDi1eHnfPzn8CF0T8mMEkYfD1L5GVWEUkEu0IRmjCQZZfwSTQghLMkLnl6jG-8PMc5ZQSfouzTgpFOtUbLDCzsM4PCXCS1e9y046AMuj9rZobW1USYc8dYEs5cBPF52oIKzGvCqs1abfo8b63Bp9m3yGgm82LE_yIEeVTC2x8Hi7diFeM_VMb7Egrjxt-iqkZ2Hu_OcovfV8m1RJpvd83rxtEkkYzQkGYeCEyJ4oZggEkDITM45bZSGTGRE5AJoVjOR5rqpuUwbKQSvgVOpleY6naKH397B2c8RfKg-jFfQdbIHO_qKZVQUlM1z8Y9GrdXBjq6Pj1WUVCfZ1Ul2dZad_gB2T3VZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519812479</pqid></control><display><type>article</type><title>Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO2 Electroreduction to Multicarbon Products</title><source>American Chemical Society Journals</source><creator>Niu, Zhuang-Zhuang ; Gao, Fei-Yue ; Zhang, Xiao-Long ; Yang, Peng-Peng ; Liu, Ren ; Chi, Li-Ping ; Wu, Zhi-Zheng ; Qin, Shuai ; Yu, Xingxing ; Gao, Min-Rui</creator><creatorcontrib>Niu, Zhuang-Zhuang ; Gao, Fei-Yue ; Zhang, Xiao-Long ; Yang, Peng-Peng ; Liu, Ren ; Chi, Li-Ping ; Wu, Zhi-Zheng ; Qin, Shuai ; Yu, Xingxing ; Gao, Min-Rui</creatorcontrib><description>Copper is currently the material with the most promise as catalyst to drive carbon dioxide (CO2) electroreduction to produce value-added multicarbon (C2+) compounds. However, a copper catalyst on a carbon-based gas diffusion layer electrode often has poor stabilityespecially when performing at high current densitiesowing to electrolyte flooding caused by the hydrophobicity decrease of the gas diffusion layer during operation. Here, we report a bioinspired copper catalyst on a gas diffusion layer that mimics the unique hierarchical structuring of Setaria’s hydrophobic leaves. This hierarchical copper structure endows the CO2 reduction electrode with sufficient hydrophobicity to build a robust gas–liquid–solid triple-phase boundary, which can not only trap more CO2 close to the active copper surface but also effectively resist electrolyte flooding even under high-rate operation. We consequently achieved a high C2+ production rate of 255 ± 5.7 mA cm–2 with a 64 ± 1.4% faradaic efficiency, as well as outstanding operational stability at 300 mA cm–2 over 45 h in a flow reactor, largely outperforming its wettable copper counterparts.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c01190</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-06, Vol.143 (21), p.8011-8021</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7805-803X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c01190$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c01190$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Gao, Fei-Yue</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Yang, Peng-Peng</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><creatorcontrib>Chi, Li-Ping</creatorcontrib><creatorcontrib>Wu, Zhi-Zheng</creatorcontrib><creatorcontrib>Qin, Shuai</creatorcontrib><creatorcontrib>Yu, Xingxing</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><title>Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO2 Electroreduction to Multicarbon Products</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Copper is currently the material with the most promise as catalyst to drive carbon dioxide (CO2) electroreduction to produce value-added multicarbon (C2+) compounds. However, a copper catalyst on a carbon-based gas diffusion layer electrode often has poor stabilityespecially when performing at high current densitiesowing to electrolyte flooding caused by the hydrophobicity decrease of the gas diffusion layer during operation. Here, we report a bioinspired copper catalyst on a gas diffusion layer that mimics the unique hierarchical structuring of Setaria’s hydrophobic leaves. This hierarchical copper structure endows the CO2 reduction electrode with sufficient hydrophobicity to build a robust gas–liquid–solid triple-phase boundary, which can not only trap more CO2 close to the active copper surface but also effectively resist electrolyte flooding even under high-rate operation. We consequently achieved a high C2+ production rate of 255 ± 5.7 mA cm–2 with a 64 ± 1.4% faradaic efficiency, as well as outstanding operational stability at 300 mA cm–2 over 45 h in a flow reactor, largely outperforming its wettable copper counterparts.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkNFKwzAUhoMoOKd3PkAuvelM0jVtLmVsdrAxEb0uaXK6ZtSmJimyN_CxzXDi1eHnfPzn8CF0T8mMEkYfD1L5GVWEUkEu0IRmjCQZZfwSTQghLMkLnl6jG-8PMc5ZQSfouzTgpFOtUbLDCzsM4PCXCS1e9y046AMuj9rZobW1USYc8dYEs5cBPF52oIKzGvCqs1abfo8b63Bp9m3yGgm82LE_yIEeVTC2x8Hi7diFeM_VMb7Egrjxt-iqkZ2Hu_OcovfV8m1RJpvd83rxtEkkYzQkGYeCEyJ4oZggEkDITM45bZSGTGRE5AJoVjOR5rqpuUwbKQSvgVOpleY6naKH397B2c8RfKg-jFfQdbIHO_qKZVQUlM1z8Y9GrdXBjq6Pj1WUVCfZ1Ul2dZad_gB2T3VZ</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Niu, Zhuang-Zhuang</creator><creator>Gao, Fei-Yue</creator><creator>Zhang, Xiao-Long</creator><creator>Yang, Peng-Peng</creator><creator>Liu, Ren</creator><creator>Chi, Li-Ping</creator><creator>Wu, Zhi-Zheng</creator><creator>Qin, Shuai</creator><creator>Yu, Xingxing</creator><creator>Gao, Min-Rui</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid></search><sort><creationdate>20210602</creationdate><title>Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO2 Electroreduction to Multicarbon Products</title><author>Niu, Zhuang-Zhuang ; Gao, Fei-Yue ; Zhang, Xiao-Long ; Yang, Peng-Peng ; Liu, Ren ; Chi, Li-Ping ; Wu, Zhi-Zheng ; Qin, Shuai ; Yu, Xingxing ; Gao, Min-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a221t-56e8600968c290aee9a5a461fcde5950979e15b2937dfb6a3fa996be61adcd6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>Gao, Fei-Yue</creatorcontrib><creatorcontrib>Zhang, Xiao-Long</creatorcontrib><creatorcontrib>Yang, Peng-Peng</creatorcontrib><creatorcontrib>Liu, Ren</creatorcontrib><creatorcontrib>Chi, Li-Ping</creatorcontrib><creatorcontrib>Wu, Zhi-Zheng</creatorcontrib><creatorcontrib>Qin, Shuai</creatorcontrib><creatorcontrib>Yu, Xingxing</creatorcontrib><creatorcontrib>Gao, Min-Rui</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Zhuang-Zhuang</au><au>Gao, Fei-Yue</au><au>Zhang, Xiao-Long</au><au>Yang, Peng-Peng</au><au>Liu, Ren</au><au>Chi, Li-Ping</au><au>Wu, Zhi-Zheng</au><au>Qin, Shuai</au><au>Yu, Xingxing</au><au>Gao, Min-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO2 Electroreduction to Multicarbon Products</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-06-02</date><risdate>2021</risdate><volume>143</volume><issue>21</issue><spage>8011</spage><epage>8021</epage><pages>8011-8021</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Copper is currently the material with the most promise as catalyst to drive carbon dioxide (CO2) electroreduction to produce value-added multicarbon (C2+) compounds. However, a copper catalyst on a carbon-based gas diffusion layer electrode often has poor stabilityespecially when performing at high current densitiesowing to electrolyte flooding caused by the hydrophobicity decrease of the gas diffusion layer during operation. Here, we report a bioinspired copper catalyst on a gas diffusion layer that mimics the unique hierarchical structuring of Setaria’s hydrophobic leaves. This hierarchical copper structure endows the CO2 reduction electrode with sufficient hydrophobicity to build a robust gas–liquid–solid triple-phase boundary, which can not only trap more CO2 close to the active copper surface but also effectively resist electrolyte flooding even under high-rate operation. We consequently achieved a high C2+ production rate of 255 ± 5.7 mA cm–2 with a 64 ± 1.4% faradaic efficiency, as well as outstanding operational stability at 300 mA cm–2 over 45 h in a flow reactor, largely outperforming its wettable copper counterparts.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.1c01190</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7805-803X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-06, Vol.143 (21), p.8011-8021
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2519812479
source American Chemical Society Journals
title Hierarchical Copper with Inherent Hydrophobicity Mitigates Electrode Flooding for High-Rate CO2 Electroreduction to Multicarbon Products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Copper%20with%20Inherent%20Hydrophobicity%20Mitigates%20Electrode%20Flooding%20for%20High-Rate%20CO2%20Electroreduction%20to%20Multicarbon%20Products&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Niu,%20Zhuang-Zhuang&rft.date=2021-06-02&rft.volume=143&rft.issue=21&rft.spage=8011&rft.epage=8021&rft.pages=8011-8021&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c01190&rft_dat=%3Cproquest_acs_j%3E2519812479%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519812479&rft_id=info:pmid/&rfr_iscdi=true