Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase

[Display omitted] •Structural mechanism of cellulose depolymerization by GH48 cellulase was examined.•BlCel48B has high processivity against crystalline and amorphous cellulose.•Substrate size and surface morphology dictate the hydrolytic rate, enzyme binding, and processivity.•Clusters of co-evolve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2021-07, Vol.264, p.118059-118059, Article 118059
Hauptverfasser: Araújo, Evandro A., Dias, Artur Hermano Sampaio, Kadowaki, Marco A.S., Piyadov, Vasily, Pellegrini, Vanessa O.A., Urio, Mateus B., Ramos, Luiz P., Skaf, Munir S., Polikarpov, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118059
container_issue
container_start_page 118059
container_title Carbohydrate polymers
container_volume 264
creator Araújo, Evandro A.
Dias, Artur Hermano Sampaio
Kadowaki, Marco A.S.
Piyadov, Vasily
Pellegrini, Vanessa O.A.
Urio, Mateus B.
Ramos, Luiz P.
Skaf, Munir S.
Polikarpov, Igor
description [Display omitted] •Structural mechanism of cellulose depolymerization by GH48 cellulase was examined.•BlCel48B has high processivity against crystalline and amorphous cellulose.•Substrate size and surface morphology dictate the hydrolytic rate, enzyme binding, and processivity.•Clusters of co-evolved residues drive the recognition and strength of cellulose binding to the active site.•Enzyme low-turnover and high processivity rates correlate with the rigidity of the catalytic tunnel. Processive cellulases are highly efficient molecular engines involved in the cellulose breakdown process. However, the mechanism that processive bacterial enzymes utilize to recruit and retain cellulose strands in the catalytic site remains poorly understood. Here, integrated enzymatic assays, protein crystallography and computational approaches were combined to study the enzymatic properties of the processive BlCel48B cellulase from Bacillus licheniformis. Hydrolytic efficiency, substrate binding affinity, cleavage patterns, and the apparent processivity of bacterial BlCel48B are significantly impacted by the cellulose size and its surface morphology. BlCel48B crystallographic structure was solved with ligands spanning -5 to -2 and +1 to +2 subsites. Statistical coupling analysis and molecular dynamics show that co-evolved residues on active site are critical for stabilizing ligands in the catalytic tunnel. Our results provide mechanistic insights into BlCel48B molecular-level determinants of activity, substrate binding, and processivity on insoluble cellulose, thus shedding light on structure-activity correlations of GH48 family members in general.
doi_str_mv 10.1016/j.carbpol.2021.118059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519810042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014486172100446X</els_id><sourcerecordid>2519810042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-f4d6939cbbac4c86903a76e63e5760b537789e2a1c8347de248eb3a684e81ddb3</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVHVqJmkfYRWLLvxFAy2cTdVM8qfFCmLtmuE4TrDyDYu1440eag-Y7E8zbZsQHDOPQd9hHzkbMsZL78cttbEZgzdNmc533KuWFG_IRuuqjrjQsq3ZMO4lJkqeXVOLhAPLK2Ss3fkXIias4rVG_Lnvh-NnWhoqYWum7uAQMcYRoiTB6RhoDC8HHszeUsdPEXj0jHdNkfaJCNEbzp6eyfVqgP8Sn9McbbTHNODGRztwe7N4HGZ4Af0T_sJaRtDv-RYQPTPQK-M9SkeaeftHgbfhth7pDvopLo6VTMI78lZazqED6f9kvy6uf65u8seHm_vd98fMisFn7JWurIWtW1SRWlVWTNhqhJKAUVVsqYQVaVqyA23SsjKQS4VNMKUSoLizjXiknxe56aKv2fASac2SwszQJhR5wWvFWdM5klarFIbA2KEVo_R9yYeNWd6QaUP-oRKL6j0iir5Pp0i5qYH9-r6xyYJvq0CSB999hA1Wg-DBecj2Em74P8T8Rerl6uv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519810042</pqid></control><display><type>article</type><title>Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Araújo, Evandro A. ; Dias, Artur Hermano Sampaio ; Kadowaki, Marco A.S. ; Piyadov, Vasily ; Pellegrini, Vanessa O.A. ; Urio, Mateus B. ; Ramos, Luiz P. ; Skaf, Munir S. ; Polikarpov, Igor</creator><creatorcontrib>Araújo, Evandro A. ; Dias, Artur Hermano Sampaio ; Kadowaki, Marco A.S. ; Piyadov, Vasily ; Pellegrini, Vanessa O.A. ; Urio, Mateus B. ; Ramos, Luiz P. ; Skaf, Munir S. ; Polikarpov, Igor</creatorcontrib><description>[Display omitted] •Structural mechanism of cellulose depolymerization by GH48 cellulase was examined.•BlCel48B has high processivity against crystalline and amorphous cellulose.•Substrate size and surface morphology dictate the hydrolytic rate, enzyme binding, and processivity.•Clusters of co-evolved residues drive the recognition and strength of cellulose binding to the active site.•Enzyme low-turnover and high processivity rates correlate with the rigidity of the catalytic tunnel. Processive cellulases are highly efficient molecular engines involved in the cellulose breakdown process. However, the mechanism that processive bacterial enzymes utilize to recruit and retain cellulose strands in the catalytic site remains poorly understood. Here, integrated enzymatic assays, protein crystallography and computational approaches were combined to study the enzymatic properties of the processive BlCel48B cellulase from Bacillus licheniformis. Hydrolytic efficiency, substrate binding affinity, cleavage patterns, and the apparent processivity of bacterial BlCel48B are significantly impacted by the cellulose size and its surface morphology. BlCel48B crystallographic structure was solved with ligands spanning -5 to -2 and +1 to +2 subsites. Statistical coupling analysis and molecular dynamics show that co-evolved residues on active site are critical for stabilizing ligands in the catalytic tunnel. Our results provide mechanistic insights into BlCel48B molecular-level determinants of activity, substrate binding, and processivity on insoluble cellulose, thus shedding light on structure-activity correlations of GH48 family members in general.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2021.118059</identifier><identifier>PMID: 33910709</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>3D-structure ; Cellulose ; GH48 cellulase ; Processivity</subject><ispartof>Carbohydrate polymers, 2021-07, Vol.264, p.118059-118059, Article 118059</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-f4d6939cbbac4c86903a76e63e5760b537789e2a1c8347de248eb3a684e81ddb3</citedby><cites>FETCH-LOGICAL-c431t-f4d6939cbbac4c86903a76e63e5760b537789e2a1c8347de248eb3a684e81ddb3</cites><orcidid>0000-0001-7485-1228 ; 0000-0002-8747-4422 ; 0000-0001-9496-4174 ; 0000-0003-4480-6121 ; 0000-0003-0188-2079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014486172100446X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33910709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Araújo, Evandro A.</creatorcontrib><creatorcontrib>Dias, Artur Hermano Sampaio</creatorcontrib><creatorcontrib>Kadowaki, Marco A.S.</creatorcontrib><creatorcontrib>Piyadov, Vasily</creatorcontrib><creatorcontrib>Pellegrini, Vanessa O.A.</creatorcontrib><creatorcontrib>Urio, Mateus B.</creatorcontrib><creatorcontrib>Ramos, Luiz P.</creatorcontrib><creatorcontrib>Skaf, Munir S.</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><title>Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>[Display omitted] •Structural mechanism of cellulose depolymerization by GH48 cellulase was examined.•BlCel48B has high processivity against crystalline and amorphous cellulose.•Substrate size and surface morphology dictate the hydrolytic rate, enzyme binding, and processivity.•Clusters of co-evolved residues drive the recognition and strength of cellulose binding to the active site.•Enzyme low-turnover and high processivity rates correlate with the rigidity of the catalytic tunnel. Processive cellulases are highly efficient molecular engines involved in the cellulose breakdown process. However, the mechanism that processive bacterial enzymes utilize to recruit and retain cellulose strands in the catalytic site remains poorly understood. Here, integrated enzymatic assays, protein crystallography and computational approaches were combined to study the enzymatic properties of the processive BlCel48B cellulase from Bacillus licheniformis. Hydrolytic efficiency, substrate binding affinity, cleavage patterns, and the apparent processivity of bacterial BlCel48B are significantly impacted by the cellulose size and its surface morphology. BlCel48B crystallographic structure was solved with ligands spanning -5 to -2 and +1 to +2 subsites. Statistical coupling analysis and molecular dynamics show that co-evolved residues on active site are critical for stabilizing ligands in the catalytic tunnel. Our results provide mechanistic insights into BlCel48B molecular-level determinants of activity, substrate binding, and processivity on insoluble cellulose, thus shedding light on structure-activity correlations of GH48 family members in general.</description><subject>3D-structure</subject><subject>Cellulose</subject><subject>GH48 cellulase</subject><subject>Processivity</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u3CAUhVHVqJmkfYRWLLvxFAy2cTdVM8qfFCmLtmuE4TrDyDYu1440eag-Y7E8zbZsQHDOPQd9hHzkbMsZL78cttbEZgzdNmc533KuWFG_IRuuqjrjQsq3ZMO4lJkqeXVOLhAPLK2Ss3fkXIias4rVG_Lnvh-NnWhoqYWum7uAQMcYRoiTB6RhoDC8HHszeUsdPEXj0jHdNkfaJCNEbzp6eyfVqgP8Sn9McbbTHNODGRztwe7N4HGZ4Af0T_sJaRtDv-RYQPTPQK-M9SkeaeftHgbfhth7pDvopLo6VTMI78lZazqED6f9kvy6uf65u8seHm_vd98fMisFn7JWurIWtW1SRWlVWTNhqhJKAUVVsqYQVaVqyA23SsjKQS4VNMKUSoLizjXiknxe56aKv2fASac2SwszQJhR5wWvFWdM5klarFIbA2KEVo_R9yYeNWd6QaUP-oRKL6j0iir5Pp0i5qYH9-r6xyYJvq0CSB999hA1Wg-DBecj2Em74P8T8Rerl6uv</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Araújo, Evandro A.</creator><creator>Dias, Artur Hermano Sampaio</creator><creator>Kadowaki, Marco A.S.</creator><creator>Piyadov, Vasily</creator><creator>Pellegrini, Vanessa O.A.</creator><creator>Urio, Mateus B.</creator><creator>Ramos, Luiz P.</creator><creator>Skaf, Munir S.</creator><creator>Polikarpov, Igor</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7485-1228</orcidid><orcidid>https://orcid.org/0000-0002-8747-4422</orcidid><orcidid>https://orcid.org/0000-0001-9496-4174</orcidid><orcidid>https://orcid.org/0000-0003-4480-6121</orcidid><orcidid>https://orcid.org/0000-0003-0188-2079</orcidid></search><sort><creationdate>20210715</creationdate><title>Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase</title><author>Araújo, Evandro A. ; Dias, Artur Hermano Sampaio ; Kadowaki, Marco A.S. ; Piyadov, Vasily ; Pellegrini, Vanessa O.A. ; Urio, Mateus B. ; Ramos, Luiz P. ; Skaf, Munir S. ; Polikarpov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-f4d6939cbbac4c86903a76e63e5760b537789e2a1c8347de248eb3a684e81ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D-structure</topic><topic>Cellulose</topic><topic>GH48 cellulase</topic><topic>Processivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araújo, Evandro A.</creatorcontrib><creatorcontrib>Dias, Artur Hermano Sampaio</creatorcontrib><creatorcontrib>Kadowaki, Marco A.S.</creatorcontrib><creatorcontrib>Piyadov, Vasily</creatorcontrib><creatorcontrib>Pellegrini, Vanessa O.A.</creatorcontrib><creatorcontrib>Urio, Mateus B.</creatorcontrib><creatorcontrib>Ramos, Luiz P.</creatorcontrib><creatorcontrib>Skaf, Munir S.</creatorcontrib><creatorcontrib>Polikarpov, Igor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araújo, Evandro A.</au><au>Dias, Artur Hermano Sampaio</au><au>Kadowaki, Marco A.S.</au><au>Piyadov, Vasily</au><au>Pellegrini, Vanessa O.A.</au><au>Urio, Mateus B.</au><au>Ramos, Luiz P.</au><au>Skaf, Munir S.</au><au>Polikarpov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>264</volume><spage>118059</spage><epage>118059</epage><pages>118059-118059</pages><artnum>118059</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>[Display omitted] •Structural mechanism of cellulose depolymerization by GH48 cellulase was examined.•BlCel48B has high processivity against crystalline and amorphous cellulose.•Substrate size and surface morphology dictate the hydrolytic rate, enzyme binding, and processivity.•Clusters of co-evolved residues drive the recognition and strength of cellulose binding to the active site.•Enzyme low-turnover and high processivity rates correlate with the rigidity of the catalytic tunnel. Processive cellulases are highly efficient molecular engines involved in the cellulose breakdown process. However, the mechanism that processive bacterial enzymes utilize to recruit and retain cellulose strands in the catalytic site remains poorly understood. Here, integrated enzymatic assays, protein crystallography and computational approaches were combined to study the enzymatic properties of the processive BlCel48B cellulase from Bacillus licheniformis. Hydrolytic efficiency, substrate binding affinity, cleavage patterns, and the apparent processivity of bacterial BlCel48B are significantly impacted by the cellulose size and its surface morphology. BlCel48B crystallographic structure was solved with ligands spanning -5 to -2 and +1 to +2 subsites. Statistical coupling analysis and molecular dynamics show that co-evolved residues on active site are critical for stabilizing ligands in the catalytic tunnel. Our results provide mechanistic insights into BlCel48B molecular-level determinants of activity, substrate binding, and processivity on insoluble cellulose, thus shedding light on structure-activity correlations of GH48 family members in general.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33910709</pmid><doi>10.1016/j.carbpol.2021.118059</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7485-1228</orcidid><orcidid>https://orcid.org/0000-0002-8747-4422</orcidid><orcidid>https://orcid.org/0000-0001-9496-4174</orcidid><orcidid>https://orcid.org/0000-0003-4480-6121</orcidid><orcidid>https://orcid.org/0000-0003-0188-2079</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2021-07, Vol.264, p.118059-118059, Article 118059
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2519810042
source ScienceDirect Journals (5 years ago - present)
subjects 3D-structure
Cellulose
GH48 cellulase
Processivity
title Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20cellulose%20properties%20on%20enzymatic%20degradation%20by%20bacterial%20GH48%20enzymes:%20Structural%20and%20mechanistic%20insights%20from%20processive%20Bacillus%20licheniformis%20Cel48B%20cellulase&rft.jtitle=Carbohydrate%20polymers&rft.au=Ara%C3%BAjo,%20Evandro%20A.&rft.date=2021-07-15&rft.volume=264&rft.spage=118059&rft.epage=118059&rft.pages=118059-118059&rft.artnum=118059&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2021.118059&rft_dat=%3Cproquest_cross%3E2519810042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519810042&rft_id=info:pmid/33910709&rft_els_id=S014486172100446X&rfr_iscdi=true