Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations

Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traffic (Copenhagen, Denmark) Denmark), 2021-07, Vol.22 (7), p.240-253
Hauptverfasser: Spiers, Helen, Songhurst, Harry, Nightingale, Luke, Folter, Joost, Hutchings, Roger, Peddie, Christopher J., Weston, Anne, Strange, Amy, Hindmarsh, Steve, Lintott, Chris, Collinson, Lucy M., Jones, Martin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 7
container_start_page 240
container_title Traffic (Copenhagen, Denmark)
container_volume 22
creator Spiers, Helen
Songhurst, Harry
Nightingale, Luke
Folter, Joost
Hutchings, Roger
Peddie, Christopher J.
Weston, Anne
Strange, Amy
Hindmarsh, Steve
Lintott, Chris
Collinson, Lucy M.
Jones, Martin L.
description Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data. Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E.
doi_str_mv 10.1111/tra.12789
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519799370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545429378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</originalsourceid><addsrcrecordid>eNp10V1LHDEUBuAgLe6qvfAPlEBvFFw3H5OZ5FL8akEQZL0eMpkzGplJpklG2Vt_ebOuFVowNzkXDy_n8CJ0SMkpzW-Zgj6lrJJqB81pSciCSFF8yTNXcqEYVTO0F-MTIYSJothFM84VLbgq5-j1AmDEPejgrHvAnQ9YT8kPOlmDIzwM4FKevcO-w-kRsJvMRmNwz9D7EbB1GHowKWQzWBN8NH5c41YnfYLzZtZBi19sesTPvp9cAgj_BMcD9LXTfYRv7_8-ur-6XJ3_XNzcXv86P7tZGC6lynd0lImmFLKRZcOlqABK01LOGScFNZRAJbQuRalVlY2qGsIKyjpJGwqt4vvoaJs7Bv97gpjqwUYDfa8d-CnWTFBVKcUrkumP_-iTn4LL22VViIJlJbM63qrN0TFAV4_BDjqsa0rqTTF1Pr9-Kybb7--JUzNA-yH_NpHBcgtebA_rz5Pq1d3ZNvIPUhOY0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545429378</pqid></control><display><type>article</type><title>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Spiers, Helen ; Songhurst, Harry ; Nightingale, Luke ; Folter, Joost ; Hutchings, Roger ; Peddie, Christopher J. ; Weston, Anne ; Strange, Amy ; Hindmarsh, Steve ; Lintott, Chris ; Collinson, Lucy M. ; Jones, Martin L.</creator><creatorcontrib>Spiers, Helen ; Songhurst, Harry ; Nightingale, Luke ; Folter, Joost ; Hutchings, Roger ; Peddie, Christopher J. ; Weston, Anne ; Strange, Amy ; Hindmarsh, Steve ; Lintott, Chris ; Collinson, Lucy M. ; Jones, Martin L. ; Zooniverse Volunteer Community ; The Zooniverse Volunteer Community</creatorcontrib><description>Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data. Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/tra.12789</identifier><identifier>PMID: 33914396</identifier><language>eng</language><publisher>Former Munksgaard: John Wiley &amp; Sons A/S</publisher><subject>cell biology ; cellular imaging ; citizen science ; HeLa cells ; image processing ; Learning algorithms ; Machine learning ; Microscopy ; Scanning electron microscopy ; Segmentation ; volume electron microscopy ; Volunteers</subject><ispartof>Traffic (Copenhagen, Denmark), 2021-07, Vol.22 (7), p.240-253</ispartof><rights>2021 The Authors. Traffic published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</citedby><cites>FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</cites><orcidid>0000-0001-7748-7935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftra.12789$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftra.12789$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33914396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spiers, Helen</creatorcontrib><creatorcontrib>Songhurst, Harry</creatorcontrib><creatorcontrib>Nightingale, Luke</creatorcontrib><creatorcontrib>Folter, Joost</creatorcontrib><creatorcontrib>Hutchings, Roger</creatorcontrib><creatorcontrib>Peddie, Christopher J.</creatorcontrib><creatorcontrib>Weston, Anne</creatorcontrib><creatorcontrib>Strange, Amy</creatorcontrib><creatorcontrib>Hindmarsh, Steve</creatorcontrib><creatorcontrib>Lintott, Chris</creatorcontrib><creatorcontrib>Collinson, Lucy M.</creatorcontrib><creatorcontrib>Jones, Martin L.</creatorcontrib><creatorcontrib>Zooniverse Volunteer Community</creatorcontrib><creatorcontrib>The Zooniverse Volunteer Community</creatorcontrib><title>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data. Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E.</description><subject>cell biology</subject><subject>cellular imaging</subject><subject>citizen science</subject><subject>HeLa cells</subject><subject>image processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microscopy</subject><subject>Scanning electron microscopy</subject><subject>Segmentation</subject><subject>volume electron microscopy</subject><subject>Volunteers</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10V1LHDEUBuAgLe6qvfAPlEBvFFw3H5OZ5FL8akEQZL0eMpkzGplJpklG2Vt_ebOuFVowNzkXDy_n8CJ0SMkpzW-Zgj6lrJJqB81pSciCSFF8yTNXcqEYVTO0F-MTIYSJothFM84VLbgq5-j1AmDEPejgrHvAnQ9YT8kPOlmDIzwM4FKevcO-w-kRsJvMRmNwz9D7EbB1GHowKWQzWBN8NH5c41YnfYLzZtZBi19sesTPvp9cAgj_BMcD9LXTfYRv7_8-ur-6XJ3_XNzcXv86P7tZGC6lynd0lImmFLKRZcOlqABK01LOGScFNZRAJbQuRalVlY2qGsIKyjpJGwqt4vvoaJs7Bv97gpjqwUYDfa8d-CnWTFBVKcUrkumP_-iTn4LL22VViIJlJbM63qrN0TFAV4_BDjqsa0rqTTF1Pr9-Kybb7--JUzNA-yH_NpHBcgtebA_rz5Pq1d3ZNvIPUhOY0A</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Spiers, Helen</creator><creator>Songhurst, Harry</creator><creator>Nightingale, Luke</creator><creator>Folter, Joost</creator><creator>Hutchings, Roger</creator><creator>Peddie, Christopher J.</creator><creator>Weston, Anne</creator><creator>Strange, Amy</creator><creator>Hindmarsh, Steve</creator><creator>Lintott, Chris</creator><creator>Collinson, Lucy M.</creator><creator>Jones, Martin L.</creator><general>John Wiley &amp; Sons A/S</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7748-7935</orcidid></search><sort><creationdate>202107</creationdate><title>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</title><author>Spiers, Helen ; Songhurst, Harry ; Nightingale, Luke ; Folter, Joost ; Hutchings, Roger ; Peddie, Christopher J. ; Weston, Anne ; Strange, Amy ; Hindmarsh, Steve ; Lintott, Chris ; Collinson, Lucy M. ; Jones, Martin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cell biology</topic><topic>cellular imaging</topic><topic>citizen science</topic><topic>HeLa cells</topic><topic>image processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microscopy</topic><topic>Scanning electron microscopy</topic><topic>Segmentation</topic><topic>volume electron microscopy</topic><topic>Volunteers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiers, Helen</creatorcontrib><creatorcontrib>Songhurst, Harry</creatorcontrib><creatorcontrib>Nightingale, Luke</creatorcontrib><creatorcontrib>Folter, Joost</creatorcontrib><creatorcontrib>Hutchings, Roger</creatorcontrib><creatorcontrib>Peddie, Christopher J.</creatorcontrib><creatorcontrib>Weston, Anne</creatorcontrib><creatorcontrib>Strange, Amy</creatorcontrib><creatorcontrib>Hindmarsh, Steve</creatorcontrib><creatorcontrib>Lintott, Chris</creatorcontrib><creatorcontrib>Collinson, Lucy M.</creatorcontrib><creatorcontrib>Jones, Martin L.</creatorcontrib><creatorcontrib>Zooniverse Volunteer Community</creatorcontrib><creatorcontrib>The Zooniverse Volunteer Community</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiers, Helen</au><au>Songhurst, Harry</au><au>Nightingale, Luke</au><au>Folter, Joost</au><au>Hutchings, Roger</au><au>Peddie, Christopher J.</au><au>Weston, Anne</au><au>Strange, Amy</au><au>Hindmarsh, Steve</au><au>Lintott, Chris</au><au>Collinson, Lucy M.</au><au>Jones, Martin L.</au><aucorp>Zooniverse Volunteer Community</aucorp><aucorp>The Zooniverse Volunteer Community</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2021-07</date><risdate>2021</risdate><volume>22</volume><issue>7</issue><spage>240</spage><epage>253</epage><pages>240-253</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data. Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E.</abstract><cop>Former Munksgaard</cop><pub>John Wiley &amp; Sons A/S</pub><pmid>33914396</pmid><doi>10.1111/tra.12789</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7748-7935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1398-9219
ispartof Traffic (Copenhagen, Denmark), 2021-07, Vol.22 (7), p.240-253
issn 1398-9219
1600-0854
language eng
recordid cdi_proquest_miscellaneous_2519799370
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects cell biology
cellular imaging
citizen science
HeLa cells
image processing
Learning algorithms
Machine learning
Microscopy
Scanning electron microscopy
Segmentation
volume electron microscopy
Volunteers
title Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20automatic%20segmentation%20of%20the%20nuclear%20envelope%20in%20electron%20microscopy%20data,%20trained%20with%20volunteer%20segmentations&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Spiers,%20Helen&rft.aucorp=Zooniverse%20Volunteer%20Community&rft.date=2021-07&rft.volume=22&rft.issue=7&rft.spage=240&rft.epage=253&rft.pages=240-253&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/tra.12789&rft_dat=%3Cproquest_cross%3E2545429378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545429378&rft_id=info:pmid/33914396&rfr_iscdi=true