Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations
Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although s...
Gespeichert in:
Veröffentlicht in: | Traffic (Copenhagen, Denmark) Denmark), 2021-07, Vol.22 (7), p.240-253 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 7 |
container_start_page | 240 |
container_title | Traffic (Copenhagen, Denmark) |
container_volume | 22 |
creator | Spiers, Helen Songhurst, Harry Nightingale, Luke Folter, Joost Hutchings, Roger Peddie, Christopher J. Weston, Anne Strange, Amy Hindmarsh, Steve Lintott, Chris Collinson, Lucy M. Jones, Martin L. |
description | Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.
Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E. |
doi_str_mv | 10.1111/tra.12789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519799370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545429378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</originalsourceid><addsrcrecordid>eNp10V1LHDEUBuAgLe6qvfAPlEBvFFw3H5OZ5FL8akEQZL0eMpkzGplJpklG2Vt_ebOuFVowNzkXDy_n8CJ0SMkpzW-Zgj6lrJJqB81pSciCSFF8yTNXcqEYVTO0F-MTIYSJothFM84VLbgq5-j1AmDEPejgrHvAnQ9YT8kPOlmDIzwM4FKevcO-w-kRsJvMRmNwz9D7EbB1GHowKWQzWBN8NH5c41YnfYLzZtZBi19sesTPvp9cAgj_BMcD9LXTfYRv7_8-ur-6XJ3_XNzcXv86P7tZGC6lynd0lImmFLKRZcOlqABK01LOGScFNZRAJbQuRalVlY2qGsIKyjpJGwqt4vvoaJs7Bv97gpjqwUYDfa8d-CnWTFBVKcUrkumP_-iTn4LL22VViIJlJbM63qrN0TFAV4_BDjqsa0rqTTF1Pr9-Kybb7--JUzNA-yH_NpHBcgtebA_rz5Pq1d3ZNvIPUhOY0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545429378</pqid></control><display><type>article</type><title>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Spiers, Helen ; Songhurst, Harry ; Nightingale, Luke ; Folter, Joost ; Hutchings, Roger ; Peddie, Christopher J. ; Weston, Anne ; Strange, Amy ; Hindmarsh, Steve ; Lintott, Chris ; Collinson, Lucy M. ; Jones, Martin L.</creator><creatorcontrib>Spiers, Helen ; Songhurst, Harry ; Nightingale, Luke ; Folter, Joost ; Hutchings, Roger ; Peddie, Christopher J. ; Weston, Anne ; Strange, Amy ; Hindmarsh, Steve ; Lintott, Chris ; Collinson, Lucy M. ; Jones, Martin L. ; Zooniverse Volunteer Community ; The Zooniverse Volunteer Community</creatorcontrib><description>Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.
Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/tra.12789</identifier><identifier>PMID: 33914396</identifier><language>eng</language><publisher>Former Munksgaard: John Wiley & Sons A/S</publisher><subject>cell biology ; cellular imaging ; citizen science ; HeLa cells ; image processing ; Learning algorithms ; Machine learning ; Microscopy ; Scanning electron microscopy ; Segmentation ; volume electron microscopy ; Volunteers</subject><ispartof>Traffic (Copenhagen, Denmark), 2021-07, Vol.22 (7), p.240-253</ispartof><rights>2021 The Authors. Traffic published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</citedby><cites>FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</cites><orcidid>0000-0001-7748-7935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftra.12789$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftra.12789$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33914396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spiers, Helen</creatorcontrib><creatorcontrib>Songhurst, Harry</creatorcontrib><creatorcontrib>Nightingale, Luke</creatorcontrib><creatorcontrib>Folter, Joost</creatorcontrib><creatorcontrib>Hutchings, Roger</creatorcontrib><creatorcontrib>Peddie, Christopher J.</creatorcontrib><creatorcontrib>Weston, Anne</creatorcontrib><creatorcontrib>Strange, Amy</creatorcontrib><creatorcontrib>Hindmarsh, Steve</creatorcontrib><creatorcontrib>Lintott, Chris</creatorcontrib><creatorcontrib>Collinson, Lucy M.</creatorcontrib><creatorcontrib>Jones, Martin L.</creatorcontrib><creatorcontrib>Zooniverse Volunteer Community</creatorcontrib><creatorcontrib>The Zooniverse Volunteer Community</creatorcontrib><title>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.
Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E.</description><subject>cell biology</subject><subject>cellular imaging</subject><subject>citizen science</subject><subject>HeLa cells</subject><subject>image processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microscopy</subject><subject>Scanning electron microscopy</subject><subject>Segmentation</subject><subject>volume electron microscopy</subject><subject>Volunteers</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10V1LHDEUBuAgLe6qvfAPlEBvFFw3H5OZ5FL8akEQZL0eMpkzGplJpklG2Vt_ebOuFVowNzkXDy_n8CJ0SMkpzW-Zgj6lrJJqB81pSciCSFF8yTNXcqEYVTO0F-MTIYSJothFM84VLbgq5-j1AmDEPejgrHvAnQ9YT8kPOlmDIzwM4FKevcO-w-kRsJvMRmNwz9D7EbB1GHowKWQzWBN8NH5c41YnfYLzZtZBi19sesTPvp9cAgj_BMcD9LXTfYRv7_8-ur-6XJ3_XNzcXv86P7tZGC6lynd0lImmFLKRZcOlqABK01LOGScFNZRAJbQuRalVlY2qGsIKyjpJGwqt4vvoaJs7Bv97gpjqwUYDfa8d-CnWTFBVKcUrkumP_-iTn4LL22VViIJlJbM63qrN0TFAV4_BDjqsa0rqTTF1Pr9-Kybb7--JUzNA-yH_NpHBcgtebA_rz5Pq1d3ZNvIPUhOY0A</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Spiers, Helen</creator><creator>Songhurst, Harry</creator><creator>Nightingale, Luke</creator><creator>Folter, Joost</creator><creator>Hutchings, Roger</creator><creator>Peddie, Christopher J.</creator><creator>Weston, Anne</creator><creator>Strange, Amy</creator><creator>Hindmarsh, Steve</creator><creator>Lintott, Chris</creator><creator>Collinson, Lucy M.</creator><creator>Jones, Martin L.</creator><general>John Wiley & Sons A/S</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7748-7935</orcidid></search><sort><creationdate>202107</creationdate><title>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</title><author>Spiers, Helen ; Songhurst, Harry ; Nightingale, Luke ; Folter, Joost ; Hutchings, Roger ; Peddie, Christopher J. ; Weston, Anne ; Strange, Amy ; Hindmarsh, Steve ; Lintott, Chris ; Collinson, Lucy M. ; Jones, Martin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-92f125b658b86b3857ee6cd13323041c10e75aa656a978b897b02412f81b1ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cell biology</topic><topic>cellular imaging</topic><topic>citizen science</topic><topic>HeLa cells</topic><topic>image processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microscopy</topic><topic>Scanning electron microscopy</topic><topic>Segmentation</topic><topic>volume electron microscopy</topic><topic>Volunteers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiers, Helen</creatorcontrib><creatorcontrib>Songhurst, Harry</creatorcontrib><creatorcontrib>Nightingale, Luke</creatorcontrib><creatorcontrib>Folter, Joost</creatorcontrib><creatorcontrib>Hutchings, Roger</creatorcontrib><creatorcontrib>Peddie, Christopher J.</creatorcontrib><creatorcontrib>Weston, Anne</creatorcontrib><creatorcontrib>Strange, Amy</creatorcontrib><creatorcontrib>Hindmarsh, Steve</creatorcontrib><creatorcontrib>Lintott, Chris</creatorcontrib><creatorcontrib>Collinson, Lucy M.</creatorcontrib><creatorcontrib>Jones, Martin L.</creatorcontrib><creatorcontrib>Zooniverse Volunteer Community</creatorcontrib><creatorcontrib>The Zooniverse Volunteer Community</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiers, Helen</au><au>Songhurst, Harry</au><au>Nightingale, Luke</au><au>Folter, Joost</au><au>Hutchings, Roger</au><au>Peddie, Christopher J.</au><au>Weston, Anne</au><au>Strange, Amy</au><au>Hindmarsh, Steve</au><au>Lintott, Chris</au><au>Collinson, Lucy M.</au><au>Jones, Martin L.</au><aucorp>Zooniverse Volunteer Community</aucorp><aucorp>The Zooniverse Volunteer Community</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2021-07</date><risdate>2021</risdate><volume>22</volume><issue>7</issue><spage>240</spage><epage>253</epage><pages>240-253</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>Advancements in volume electron microscopy mean it is now possible to generate thousands of serial images at nanometre resolution overnight, yet the gold standard approach for data analysis remains manual segmentation by an expert microscopist, resulting in a critical research bottleneck. Although some machine learning approaches exist in this domain, we remain far from realizing the aspiration of a highly accurate, yet generic, automated analysis approach, with a major obstacle being lack of sufficient high‐quality ground‐truth data. To address this, we developed a novel citizen science project, Etch a Cell, to enable volunteers to manually segment the nuclear envelope (NE) of HeLa cells imaged with serial blockface scanning electron microscopy. We present our approach for aggregating multiple volunteer annotations to generate a high‐quality consensus segmentation and demonstrate that data produced exclusively by volunteers can be used to train a highly accurate machine learning algorithm for automatic segmentation of the NE, which we share here, in addition to our archived benchmark data.
Serial blockface scanning electron microscopy was used to create a serial HeLa cell image stack, A. The nuclear envelope (NE) in these data was segmented through volunteer effort via citizen science, B,C. High‐quality NE segmentations were produced, D, and used to train a deep learning model for automatic segmentation of the NE. Volunteer and deep learning predicted NE segmentations were comparable to expert date, E.</abstract><cop>Former Munksgaard</cop><pub>John Wiley & Sons A/S</pub><pmid>33914396</pmid><doi>10.1111/tra.12789</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7748-7935</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1398-9219 |
ispartof | Traffic (Copenhagen, Denmark), 2021-07, Vol.22 (7), p.240-253 |
issn | 1398-9219 1600-0854 |
language | eng |
recordid | cdi_proquest_miscellaneous_2519799370 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | cell biology cellular imaging citizen science HeLa cells image processing Learning algorithms Machine learning Microscopy Scanning electron microscopy Segmentation volume electron microscopy Volunteers |
title | Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20automatic%20segmentation%20of%20the%20nuclear%20envelope%20in%20electron%20microscopy%20data,%20trained%20with%20volunteer%20segmentations&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Spiers,%20Helen&rft.aucorp=Zooniverse%20Volunteer%20Community&rft.date=2021-07&rft.volume=22&rft.issue=7&rft.spage=240&rft.epage=253&rft.pages=240-253&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/tra.12789&rft_dat=%3Cproquest_cross%3E2545429378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545429378&rft_id=info:pmid/33914396&rfr_iscdi=true |