Segmentation of retinal vessels by fusing contour information and conditional generative adversarial
The existing retinal vessels segmentation algorithms have various problems that the end of main vessels are easy to break, and the central macula and the optic disc boundary are likely to be mistakenly segmented. To solve the above problems, a novel retinal vessels segmentation algorithm is proposed...
Gespeichert in:
Veröffentlicht in: | Sheng wu yi xue gong cheng xue za zhi 2021-04, Vol.38 (2), p.276-285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | 2 |
container_start_page | 276 |
container_title | Sheng wu yi xue gong cheng xue za zhi |
container_volume | 38 |
creator | Liang, Liming Lan, Zhimin Sheng, Xiaoqi Xie, Zhaoben Liu, Wanrong |
description | The existing retinal vessels segmentation algorithms have various problems that the end of main vessels are easy to break, and the central macula and the optic disc boundary are likely to be mistakenly segmented. To solve the above problems, a novel retinal vessels segmentation algorithm is proposed in this paper. The algorithm merged together vessels contour information and conditional generative adversarial nets. Firstly, non-uniform light removal and principal component analysis were used to process the fundus images. Therefore, it enhanced the contrast between the blood vessels and the background, and obtained the single-scale gray images with rich feature information. Secondly, the dense blocks integrated with the deep separable convolution with offset and squeeze-and-exception (SE) block were applied to the encoder and decoder to alleviate the gradient disappearance or explosion. Simultaneously, the network focused on the feature information of the learning target. Thirdly, the contour loss function was |
doi_str_mv | 10.7507/1001-5515.202005019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519799248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526350286</sourcerecordid><originalsourceid>FETCH-LOGICAL-p154t-b97f36a9b9460dc212015492904aa7f429817dba663ba1880eb198b5f17ec0463</originalsourceid><addsrcrecordid>eNpdkE9LxDAQxXNQ3EX3EwgS8OKl6yRp0uQoi_9gwYN6Lkk7XSJtuibtwn57u-zqwdMwb35v4D1CrhksCwnFPQNgmZRMLjlwAAnMnJH5nzoji5S8A-AalNLigsyEMExwXcxJ_Y6bDsNgB98H2jc04uCDbekOU8I2UbenzZh82NCqD0M_RupD08fuaLChPui1P2yTa4MB43TaIbX1DmOy0dv2ipw3tk24OM1L8vn0-LF6ydZvz6-rh3W2ZTIfMmeKRihrnMkV1BVnHCbdcAO5tUWTc6NZUTurlHCWaQ3omNFONqzACnIlLsnd8e829t8jpqHsfKqwbW3Afkwll8wUxvBcT-jtP_RryjZFOFBcCTm1dXh4c6JG12FdbqPvbNyXv_2JH988cdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526350286</pqid></control><display><type>article</type><title>Segmentation of retinal vessels by fusing contour information and conditional generative adversarial</title><source>MEDLINE</source><source>PubMed Central</source><creator>Liang, Liming ; Lan, Zhimin ; Sheng, Xiaoqi ; Xie, Zhaoben ; Liu, Wanrong</creator><creatorcontrib>Liang, Liming ; Lan, Zhimin ; Sheng, Xiaoqi ; Xie, Zhaoben ; Liu, Wanrong</creatorcontrib><description>The existing retinal vessels segmentation algorithms have various problems that the end of main vessels are easy to break, and the central macula and the optic disc boundary are likely to be mistakenly segmented. To solve the above problems, a novel retinal vessels segmentation algorithm is proposed in this paper. The algorithm merged together vessels contour information and conditional generative adversarial nets. Firstly, non-uniform light removal and principal component analysis were used to process the fundus images. Therefore, it enhanced the contrast between the blood vessels and the background, and obtained the single-scale gray images with rich feature information. Secondly, the dense blocks integrated with the deep separable convolution with offset and squeeze-and-exception (SE) block were applied to the encoder and decoder to alleviate the gradient disappearance or explosion. Simultaneously, the network focused on the feature information of the learning target. Thirdly, the contour loss function was</description><identifier>ISSN: 1001-5515</identifier><identifier>DOI: 10.7507/1001-5515.202005019</identifier><identifier>PMID: 33913287</identifier><language>chi</language><publisher>China: Sichuan Society for Biomedical Engineering</publisher><subject>Algorithms ; Blood vessels ; Coders ; Contours ; Convolution ; Fundus Oculi ; Image contrast ; Image enhancement ; Image segmentation ; Medical imaging ; Optic Disk ; Principal components analysis ; Retina ; Retinal Vessels - diagnostic imaging ; ROC Curve</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2021-04, Vol.38 (2), p.276-285</ispartof><rights>Copyright Sichuan Society for Biomedical Engineering 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33913287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Liming</creatorcontrib><creatorcontrib>Lan, Zhimin</creatorcontrib><creatorcontrib>Sheng, Xiaoqi</creatorcontrib><creatorcontrib>Xie, Zhaoben</creatorcontrib><creatorcontrib>Liu, Wanrong</creatorcontrib><title>Segmentation of retinal vessels by fusing contour information and conditional generative adversarial</title><title>Sheng wu yi xue gong cheng xue za zhi</title><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><description>The existing retinal vessels segmentation algorithms have various problems that the end of main vessels are easy to break, and the central macula and the optic disc boundary are likely to be mistakenly segmented. To solve the above problems, a novel retinal vessels segmentation algorithm is proposed in this paper. The algorithm merged together vessels contour information and conditional generative adversarial nets. Firstly, non-uniform light removal and principal component analysis were used to process the fundus images. Therefore, it enhanced the contrast between the blood vessels and the background, and obtained the single-scale gray images with rich feature information. Secondly, the dense blocks integrated with the deep separable convolution with offset and squeeze-and-exception (SE) block were applied to the encoder and decoder to alleviate the gradient disappearance or explosion. Simultaneously, the network focused on the feature information of the learning target. Thirdly, the contour loss function was</description><subject>Algorithms</subject><subject>Blood vessels</subject><subject>Coders</subject><subject>Contours</subject><subject>Convolution</subject><subject>Fundus Oculi</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Optic Disk</subject><subject>Principal components analysis</subject><subject>Retina</subject><subject>Retinal Vessels - diagnostic imaging</subject><subject>ROC Curve</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE9LxDAQxXNQ3EX3EwgS8OKl6yRp0uQoi_9gwYN6Lkk7XSJtuibtwn57u-zqwdMwb35v4D1CrhksCwnFPQNgmZRMLjlwAAnMnJH5nzoji5S8A-AalNLigsyEMExwXcxJ_Y6bDsNgB98H2jc04uCDbekOU8I2UbenzZh82NCqD0M_RupD08fuaLChPui1P2yTa4MB43TaIbX1DmOy0dv2ipw3tk24OM1L8vn0-LF6ydZvz6-rh3W2ZTIfMmeKRihrnMkV1BVnHCbdcAO5tUWTc6NZUTurlHCWaQ3omNFONqzACnIlLsnd8e829t8jpqHsfKqwbW3Afkwll8wUxvBcT-jtP_RryjZFOFBcCTm1dXh4c6JG12FdbqPvbNyXv_2JH988cdc</recordid><startdate>20210425</startdate><enddate>20210425</enddate><creator>Liang, Liming</creator><creator>Lan, Zhimin</creator><creator>Sheng, Xiaoqi</creator><creator>Xie, Zhaoben</creator><creator>Liu, Wanrong</creator><general>Sichuan Society for Biomedical Engineering</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20210425</creationdate><title>Segmentation of retinal vessels by fusing contour information and conditional generative adversarial</title><author>Liang, Liming ; Lan, Zhimin ; Sheng, Xiaoqi ; Xie, Zhaoben ; Liu, Wanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p154t-b97f36a9b9460dc212015492904aa7f429817dba663ba1880eb198b5f17ec0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Blood vessels</topic><topic>Coders</topic><topic>Contours</topic><topic>Convolution</topic><topic>Fundus Oculi</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Optic Disk</topic><topic>Principal components analysis</topic><topic>Retina</topic><topic>Retinal Vessels - diagnostic imaging</topic><topic>ROC Curve</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Liming</creatorcontrib><creatorcontrib>Lan, Zhimin</creatorcontrib><creatorcontrib>Sheng, Xiaoqi</creatorcontrib><creatorcontrib>Xie, Zhaoben</creatorcontrib><creatorcontrib>Liu, Wanrong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Liming</au><au>Lan, Zhimin</au><au>Sheng, Xiaoqi</au><au>Xie, Zhaoben</au><au>Liu, Wanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of retinal vessels by fusing contour information and conditional generative adversarial</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><date>2021-04-25</date><risdate>2021</risdate><volume>38</volume><issue>2</issue><spage>276</spage><epage>285</epage><pages>276-285</pages><issn>1001-5515</issn><abstract>The existing retinal vessels segmentation algorithms have various problems that the end of main vessels are easy to break, and the central macula and the optic disc boundary are likely to be mistakenly segmented. To solve the above problems, a novel retinal vessels segmentation algorithm is proposed in this paper. The algorithm merged together vessels contour information and conditional generative adversarial nets. Firstly, non-uniform light removal and principal component analysis were used to process the fundus images. Therefore, it enhanced the contrast between the blood vessels and the background, and obtained the single-scale gray images with rich feature information. Secondly, the dense blocks integrated with the deep separable convolution with offset and squeeze-and-exception (SE) block were applied to the encoder and decoder to alleviate the gradient disappearance or explosion. Simultaneously, the network focused on the feature information of the learning target. Thirdly, the contour loss function was</abstract><cop>China</cop><pub>Sichuan Society for Biomedical Engineering</pub><pmid>33913287</pmid><doi>10.7507/1001-5515.202005019</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-5515 |
ispartof | Sheng wu yi xue gong cheng xue za zhi, 2021-04, Vol.38 (2), p.276-285 |
issn | 1001-5515 |
language | chi |
recordid | cdi_proquest_miscellaneous_2519799248 |
source | MEDLINE; PubMed Central |
subjects | Algorithms Blood vessels Coders Contours Convolution Fundus Oculi Image contrast Image enhancement Image segmentation Medical imaging Optic Disk Principal components analysis Retina Retinal Vessels - diagnostic imaging ROC Curve |
title | Segmentation of retinal vessels by fusing contour information and conditional generative adversarial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20retinal%20vessels%20by%20fusing%20contour%20information%20and%20conditional%20generative%20adversarial&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Liang,%20Liming&rft.date=2021-04-25&rft.volume=38&rft.issue=2&rft.spage=276&rft.epage=285&rft.pages=276-285&rft.issn=1001-5515&rft_id=info:doi/10.7507/1001-5515.202005019&rft_dat=%3Cproquest_pubme%3E2526350286%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526350286&rft_id=info:pmid/33913287&rfr_iscdi=true |