Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis

ABSTRACT Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol star...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral research 2021-08, Vol.36 (8), p.1621-1635
Hauptverfasser: Rössler, Uta, Hennig, Anna Floriane, Stelzer, Nina, Bose, Shroddha, Kopp, Johannes, Søe, Kent, Cyganek, Lukas, Zifarelli, Giovanni, Ali, Salaheddine, Hagen, Maja, Strässler, Elisabeth Tamara, Hahn, Gabriele, Pusch, Michael, Stauber, Tobias, Izsvák, Zsuzsanna, Gossen, Manfred, Stachelscheid, Harald, Kornak, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1635
container_issue 8
container_start_page 1621
container_title Journal of bone and mineral research
container_volume 36
creator Rössler, Uta
Hennig, Anna Floriane
Stelzer, Nina
Bose, Shroddha
Kopp, Johannes
Søe, Kent
Cyganek, Lukas
Zifarelli, Giovanni
Ali, Salaheddine
Hagen, Maja
Strässler, Elisabeth Tamara
Hahn, Gabriele
Pusch, Michael
Stauber, Tobias
Izsvák, Zsuzsanna
Gossen, Manfred
Stachelscheid, Harald
Kornak, Uwe
description ABSTRACT Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
doi_str_mv 10.1002/jbmr.4322
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519324621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519324621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_Ey_pqNCiASQE68hxblqPnDjYDqg7HgGJN-RJcGZaFpVYWbLPPb6fPoSeU3JCCWGnu3aIJ4Iz9gCtqGS8EqqmD9GK1LWoiOD0CD1JaUcIUVKpx-iIc02k1GKFfp_3vbMOxoyvYIRosgsjDj0OKUOw3qSccB_DgK_nwYzYjd1socOTn6ObQl4GCzlgC94nbMYO9_NoF4vxhf4OKburvTUtWg_5ujxstpuP6z8_f0XwJhfd_rcJcgzJpafoUW98gme35zH6-vb8y-ai2n56d7l5s60sr2tWKQKMCE2FboWlLZW9XUtS65YZquvOtK0GAGYFaTtWLqHsLem6NkYpq4Xlx-jVwTvF8G0uizaDS0sOM0KYU8Mk1ZwJxWhBX95Dd2GOJeJCyXXNFZG8UK8PlC05UoS-maIbTLxpKGmWppqlqWZpqrAvbo1zO0D3j7yrpgCnB-CH83Dzf1Pz_uzD573yL78RojI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557836053</pqid></control><display><type>article</type><title>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rössler, Uta ; Hennig, Anna Floriane ; Stelzer, Nina ; Bose, Shroddha ; Kopp, Johannes ; Søe, Kent ; Cyganek, Lukas ; Zifarelli, Giovanni ; Ali, Salaheddine ; Hagen, Maja ; Strässler, Elisabeth Tamara ; Hahn, Gabriele ; Pusch, Michael ; Stauber, Tobias ; Izsvák, Zsuzsanna ; Gossen, Manfred ; Stachelscheid, Harald ; Kornak, Uwe</creator><creatorcontrib>Rössler, Uta ; Hennig, Anna Floriane ; Stelzer, Nina ; Bose, Shroddha ; Kopp, Johannes ; Søe, Kent ; Cyganek, Lukas ; Zifarelli, Giovanni ; Ali, Salaheddine ; Hagen, Maja ; Strässler, Elisabeth Tamara ; Hahn, Gabriele ; Pusch, Michael ; Stauber, Tobias ; Izsvák, Zsuzsanna ; Gossen, Manfred ; Stachelscheid, Harald ; Kornak, Uwe</creatorcontrib><description>ABSTRACT Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.4322</identifier><identifier>PMID: 33905594</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bone resorption ; Cell differentiation ; Chloride Channels - genetics ; CLCN7 ; hiPSCs ; Humans ; Induced Pluripotent Stem Cells ; Ion currents ; Leukocyte migration ; Leukocytes, Mononuclear ; Localization ; Medical innovations ; Missense mutation ; Monocytes ; Mutation ; Neural coding ; Osteoclastogenesis ; OSTEOCLASTS ; OSTEOPETROSIS ; Osteopetrosis - genetics ; Patients ; Peripheral blood mononuclear cells ; Pluripotency ; Stem cells ; Surface markers</subject><ispartof>Journal of bone and mineral research, 2021-08, Vol.36 (8), p.1621-1635</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</rights><rights>2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</citedby><cites>FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</cites><orcidid>0000-0002-3942-3209 ; 0000-0001-7402-314X ; 0000-0002-0391-1497 ; 0000-0002-1761-4063 ; 0000-0002-9283-4605 ; 0000-0002-5286-9686 ; 0000-0002-0351-1645 ; 0000-0002-2053-2384 ; 0000-0001-5567-8300 ; 0000-0003-2203-7229 ; 0000-0002-4582-9838 ; 0000-0003-1969-333X ; 0000-0001-9120-1382 ; 0000-0002-8644-8847 ; 0000-0003-0727-6109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.4322$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.4322$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33905594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rössler, Uta</creatorcontrib><creatorcontrib>Hennig, Anna Floriane</creatorcontrib><creatorcontrib>Stelzer, Nina</creatorcontrib><creatorcontrib>Bose, Shroddha</creatorcontrib><creatorcontrib>Kopp, Johannes</creatorcontrib><creatorcontrib>Søe, Kent</creatorcontrib><creatorcontrib>Cyganek, Lukas</creatorcontrib><creatorcontrib>Zifarelli, Giovanni</creatorcontrib><creatorcontrib>Ali, Salaheddine</creatorcontrib><creatorcontrib>Hagen, Maja</creatorcontrib><creatorcontrib>Strässler, Elisabeth Tamara</creatorcontrib><creatorcontrib>Hahn, Gabriele</creatorcontrib><creatorcontrib>Pusch, Michael</creatorcontrib><creatorcontrib>Stauber, Tobias</creatorcontrib><creatorcontrib>Izsvák, Zsuzsanna</creatorcontrib><creatorcontrib>Gossen, Manfred</creatorcontrib><creatorcontrib>Stachelscheid, Harald</creatorcontrib><creatorcontrib>Kornak, Uwe</creatorcontrib><title>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>ABSTRACT Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</description><subject>Bone resorption</subject><subject>Cell differentiation</subject><subject>Chloride Channels - genetics</subject><subject>CLCN7</subject><subject>hiPSCs</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells</subject><subject>Ion currents</subject><subject>Leukocyte migration</subject><subject>Leukocytes, Mononuclear</subject><subject>Localization</subject><subject>Medical innovations</subject><subject>Missense mutation</subject><subject>Monocytes</subject><subject>Mutation</subject><subject>Neural coding</subject><subject>Osteoclastogenesis</subject><subject>OSTEOCLASTS</subject><subject>OSTEOPETROSIS</subject><subject>Osteopetrosis - genetics</subject><subject>Patients</subject><subject>Peripheral blood mononuclear cells</subject><subject>Pluripotency</subject><subject>Stem cells</subject><subject>Surface markers</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_Ey_pqNCiASQE68hxblqPnDjYDqg7HgGJN-RJcGZaFpVYWbLPPb6fPoSeU3JCCWGnu3aIJ4Iz9gCtqGS8EqqmD9GK1LWoiOD0CD1JaUcIUVKpx-iIc02k1GKFfp_3vbMOxoyvYIRosgsjDj0OKUOw3qSccB_DgK_nwYzYjd1socOTn6ObQl4GCzlgC94nbMYO9_NoF4vxhf4OKburvTUtWg_5ujxstpuP6z8_f0XwJhfd_rcJcgzJpafoUW98gme35zH6-vb8y-ai2n56d7l5s60sr2tWKQKMCE2FboWlLZW9XUtS65YZquvOtK0GAGYFaTtWLqHsLem6NkYpq4Xlx-jVwTvF8G0uizaDS0sOM0KYU8Mk1ZwJxWhBX95Dd2GOJeJCyXXNFZG8UK8PlC05UoS-maIbTLxpKGmWppqlqWZpqrAvbo1zO0D3j7yrpgCnB-CH83Dzf1Pz_uzD573yL78RojI</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Rössler, Uta</creator><creator>Hennig, Anna Floriane</creator><creator>Stelzer, Nina</creator><creator>Bose, Shroddha</creator><creator>Kopp, Johannes</creator><creator>Søe, Kent</creator><creator>Cyganek, Lukas</creator><creator>Zifarelli, Giovanni</creator><creator>Ali, Salaheddine</creator><creator>Hagen, Maja</creator><creator>Strässler, Elisabeth Tamara</creator><creator>Hahn, Gabriele</creator><creator>Pusch, Michael</creator><creator>Stauber, Tobias</creator><creator>Izsvák, Zsuzsanna</creator><creator>Gossen, Manfred</creator><creator>Stachelscheid, Harald</creator><creator>Kornak, Uwe</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3942-3209</orcidid><orcidid>https://orcid.org/0000-0001-7402-314X</orcidid><orcidid>https://orcid.org/0000-0002-0391-1497</orcidid><orcidid>https://orcid.org/0000-0002-1761-4063</orcidid><orcidid>https://orcid.org/0000-0002-9283-4605</orcidid><orcidid>https://orcid.org/0000-0002-5286-9686</orcidid><orcidid>https://orcid.org/0000-0002-0351-1645</orcidid><orcidid>https://orcid.org/0000-0002-2053-2384</orcidid><orcidid>https://orcid.org/0000-0001-5567-8300</orcidid><orcidid>https://orcid.org/0000-0003-2203-7229</orcidid><orcidid>https://orcid.org/0000-0002-4582-9838</orcidid><orcidid>https://orcid.org/0000-0003-1969-333X</orcidid><orcidid>https://orcid.org/0000-0001-9120-1382</orcidid><orcidid>https://orcid.org/0000-0002-8644-8847</orcidid><orcidid>https://orcid.org/0000-0003-0727-6109</orcidid></search><sort><creationdate>202108</creationdate><title>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</title><author>Rössler, Uta ; Hennig, Anna Floriane ; Stelzer, Nina ; Bose, Shroddha ; Kopp, Johannes ; Søe, Kent ; Cyganek, Lukas ; Zifarelli, Giovanni ; Ali, Salaheddine ; Hagen, Maja ; Strässler, Elisabeth Tamara ; Hahn, Gabriele ; Pusch, Michael ; Stauber, Tobias ; Izsvák, Zsuzsanna ; Gossen, Manfred ; Stachelscheid, Harald ; Kornak, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bone resorption</topic><topic>Cell differentiation</topic><topic>Chloride Channels - genetics</topic><topic>CLCN7</topic><topic>hiPSCs</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells</topic><topic>Ion currents</topic><topic>Leukocyte migration</topic><topic>Leukocytes, Mononuclear</topic><topic>Localization</topic><topic>Medical innovations</topic><topic>Missense mutation</topic><topic>Monocytes</topic><topic>Mutation</topic><topic>Neural coding</topic><topic>Osteoclastogenesis</topic><topic>OSTEOCLASTS</topic><topic>OSTEOPETROSIS</topic><topic>Osteopetrosis - genetics</topic><topic>Patients</topic><topic>Peripheral blood mononuclear cells</topic><topic>Pluripotency</topic><topic>Stem cells</topic><topic>Surface markers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rössler, Uta</creatorcontrib><creatorcontrib>Hennig, Anna Floriane</creatorcontrib><creatorcontrib>Stelzer, Nina</creatorcontrib><creatorcontrib>Bose, Shroddha</creatorcontrib><creatorcontrib>Kopp, Johannes</creatorcontrib><creatorcontrib>Søe, Kent</creatorcontrib><creatorcontrib>Cyganek, Lukas</creatorcontrib><creatorcontrib>Zifarelli, Giovanni</creatorcontrib><creatorcontrib>Ali, Salaheddine</creatorcontrib><creatorcontrib>Hagen, Maja</creatorcontrib><creatorcontrib>Strässler, Elisabeth Tamara</creatorcontrib><creatorcontrib>Hahn, Gabriele</creatorcontrib><creatorcontrib>Pusch, Michael</creatorcontrib><creatorcontrib>Stauber, Tobias</creatorcontrib><creatorcontrib>Izsvák, Zsuzsanna</creatorcontrib><creatorcontrib>Gossen, Manfred</creatorcontrib><creatorcontrib>Stachelscheid, Harald</creatorcontrib><creatorcontrib>Kornak, Uwe</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rössler, Uta</au><au>Hennig, Anna Floriane</au><au>Stelzer, Nina</au><au>Bose, Shroddha</au><au>Kopp, Johannes</au><au>Søe, Kent</au><au>Cyganek, Lukas</au><au>Zifarelli, Giovanni</au><au>Ali, Salaheddine</au><au>Hagen, Maja</au><au>Strässler, Elisabeth Tamara</au><au>Hahn, Gabriele</au><au>Pusch, Michael</au><au>Stauber, Tobias</au><au>Izsvák, Zsuzsanna</au><au>Gossen, Manfred</au><au>Stachelscheid, Harald</au><au>Kornak, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2021-08</date><risdate>2021</risdate><volume>36</volume><issue>8</issue><spage>1621</spage><epage>1635</epage><pages>1621-1635</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><abstract>ABSTRACT Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33905594</pmid><doi>10.1002/jbmr.4322</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3942-3209</orcidid><orcidid>https://orcid.org/0000-0001-7402-314X</orcidid><orcidid>https://orcid.org/0000-0002-0391-1497</orcidid><orcidid>https://orcid.org/0000-0002-1761-4063</orcidid><orcidid>https://orcid.org/0000-0002-9283-4605</orcidid><orcidid>https://orcid.org/0000-0002-5286-9686</orcidid><orcidid>https://orcid.org/0000-0002-0351-1645</orcidid><orcidid>https://orcid.org/0000-0002-2053-2384</orcidid><orcidid>https://orcid.org/0000-0001-5567-8300</orcidid><orcidid>https://orcid.org/0000-0003-2203-7229</orcidid><orcidid>https://orcid.org/0000-0002-4582-9838</orcidid><orcidid>https://orcid.org/0000-0003-1969-333X</orcidid><orcidid>https://orcid.org/0000-0001-9120-1382</orcidid><orcidid>https://orcid.org/0000-0002-8644-8847</orcidid><orcidid>https://orcid.org/0000-0003-0727-6109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-0431
ispartof Journal of bone and mineral research, 2021-08, Vol.36 (8), p.1621-1635
issn 0884-0431
1523-4681
language eng
recordid cdi_proquest_miscellaneous_2519324621
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Bone resorption
Cell differentiation
Chloride Channels - genetics
CLCN7
hiPSCs
Humans
Induced Pluripotent Stem Cells
Ion currents
Leukocyte migration
Leukocytes, Mononuclear
Localization
Medical innovations
Missense mutation
Monocytes
Mutation
Neural coding
Osteoclastogenesis
OSTEOCLASTS
OSTEOPETROSIS
Osteopetrosis - genetics
Patients
Peripheral blood mononuclear cells
Pluripotency
Stem cells
Surface markers
title Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20generation%20of%20osteoclasts%20from%20human%20induced%20pluripotent%20stem%20cells%20and%20functional%20investigations%20of%20lethal%20CLCN7%E2%80%90related%20osteopetrosis&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=R%C3%B6ssler,%20Uta&rft.date=2021-08&rft.volume=36&rft.issue=8&rft.spage=1621&rft.epage=1635&rft.pages=1621-1635&rft.issn=0884-0431&rft.eissn=1523-4681&rft_id=info:doi/10.1002/jbmr.4322&rft_dat=%3Cproquest_cross%3E2519324621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557836053&rft_id=info:pmid/33905594&rfr_iscdi=true