Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis
ABSTRACT Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol star...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral research 2021-08, Vol.36 (8), p.1621-1635 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1635 |
---|---|
container_issue | 8 |
container_start_page | 1621 |
container_title | Journal of bone and mineral research |
container_volume | 36 |
creator | Rössler, Uta Hennig, Anna Floriane Stelzer, Nina Bose, Shroddha Kopp, Johannes Søe, Kent Cyganek, Lukas Zifarelli, Giovanni Ali, Salaheddine Hagen, Maja Strässler, Elisabeth Tamara Hahn, Gabriele Pusch, Michael Stauber, Tobias Izsvák, Zsuzsanna Gossen, Manfred Stachelscheid, Harald Kornak, Uwe |
description | ABSTRACT
Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR). |
doi_str_mv | 10.1002/jbmr.4322 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519324621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519324621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_Ey_pqNCiASQE68hxblqPnDjYDqg7HgGJN-RJcGZaFpVYWbLPPb6fPoSeU3JCCWGnu3aIJ4Iz9gCtqGS8EqqmD9GK1LWoiOD0CD1JaUcIUVKpx-iIc02k1GKFfp_3vbMOxoyvYIRosgsjDj0OKUOw3qSccB_DgK_nwYzYjd1socOTn6ObQl4GCzlgC94nbMYO9_NoF4vxhf4OKburvTUtWg_5ujxstpuP6z8_f0XwJhfd_rcJcgzJpafoUW98gme35zH6-vb8y-ai2n56d7l5s60sr2tWKQKMCE2FboWlLZW9XUtS65YZquvOtK0GAGYFaTtWLqHsLem6NkYpq4Xlx-jVwTvF8G0uizaDS0sOM0KYU8Mk1ZwJxWhBX95Dd2GOJeJCyXXNFZG8UK8PlC05UoS-maIbTLxpKGmWppqlqWZpqrAvbo1zO0D3j7yrpgCnB-CH83Dzf1Pz_uzD573yL78RojI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557836053</pqid></control><display><type>article</type><title>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rössler, Uta ; Hennig, Anna Floriane ; Stelzer, Nina ; Bose, Shroddha ; Kopp, Johannes ; Søe, Kent ; Cyganek, Lukas ; Zifarelli, Giovanni ; Ali, Salaheddine ; Hagen, Maja ; Strässler, Elisabeth Tamara ; Hahn, Gabriele ; Pusch, Michael ; Stauber, Tobias ; Izsvák, Zsuzsanna ; Gossen, Manfred ; Stachelscheid, Harald ; Kornak, Uwe</creator><creatorcontrib>Rössler, Uta ; Hennig, Anna Floriane ; Stelzer, Nina ; Bose, Shroddha ; Kopp, Johannes ; Søe, Kent ; Cyganek, Lukas ; Zifarelli, Giovanni ; Ali, Salaheddine ; Hagen, Maja ; Strässler, Elisabeth Tamara ; Hahn, Gabriele ; Pusch, Michael ; Stauber, Tobias ; Izsvák, Zsuzsanna ; Gossen, Manfred ; Stachelscheid, Harald ; Kornak, Uwe</creatorcontrib><description>ABSTRACT
Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.4322</identifier><identifier>PMID: 33905594</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bone resorption ; Cell differentiation ; Chloride Channels - genetics ; CLCN7 ; hiPSCs ; Humans ; Induced Pluripotent Stem Cells ; Ion currents ; Leukocyte migration ; Leukocytes, Mononuclear ; Localization ; Medical innovations ; Missense mutation ; Monocytes ; Mutation ; Neural coding ; Osteoclastogenesis ; OSTEOCLASTS ; OSTEOPETROSIS ; Osteopetrosis - genetics ; Patients ; Peripheral blood mononuclear cells ; Pluripotency ; Stem cells ; Surface markers</subject><ispartof>Journal of bone and mineral research, 2021-08, Vol.36 (8), p.1621-1635</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</rights><rights>2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</citedby><cites>FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</cites><orcidid>0000-0002-3942-3209 ; 0000-0001-7402-314X ; 0000-0002-0391-1497 ; 0000-0002-1761-4063 ; 0000-0002-9283-4605 ; 0000-0002-5286-9686 ; 0000-0002-0351-1645 ; 0000-0002-2053-2384 ; 0000-0001-5567-8300 ; 0000-0003-2203-7229 ; 0000-0002-4582-9838 ; 0000-0003-1969-333X ; 0000-0001-9120-1382 ; 0000-0002-8644-8847 ; 0000-0003-0727-6109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.4322$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.4322$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33905594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rössler, Uta</creatorcontrib><creatorcontrib>Hennig, Anna Floriane</creatorcontrib><creatorcontrib>Stelzer, Nina</creatorcontrib><creatorcontrib>Bose, Shroddha</creatorcontrib><creatorcontrib>Kopp, Johannes</creatorcontrib><creatorcontrib>Søe, Kent</creatorcontrib><creatorcontrib>Cyganek, Lukas</creatorcontrib><creatorcontrib>Zifarelli, Giovanni</creatorcontrib><creatorcontrib>Ali, Salaheddine</creatorcontrib><creatorcontrib>Hagen, Maja</creatorcontrib><creatorcontrib>Strässler, Elisabeth Tamara</creatorcontrib><creatorcontrib>Hahn, Gabriele</creatorcontrib><creatorcontrib>Pusch, Michael</creatorcontrib><creatorcontrib>Stauber, Tobias</creatorcontrib><creatorcontrib>Izsvák, Zsuzsanna</creatorcontrib><creatorcontrib>Gossen, Manfred</creatorcontrib><creatorcontrib>Stachelscheid, Harald</creatorcontrib><creatorcontrib>Kornak, Uwe</creatorcontrib><title>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>ABSTRACT
Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</description><subject>Bone resorption</subject><subject>Cell differentiation</subject><subject>Chloride Channels - genetics</subject><subject>CLCN7</subject><subject>hiPSCs</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells</subject><subject>Ion currents</subject><subject>Leukocyte migration</subject><subject>Leukocytes, Mononuclear</subject><subject>Localization</subject><subject>Medical innovations</subject><subject>Missense mutation</subject><subject>Monocytes</subject><subject>Mutation</subject><subject>Neural coding</subject><subject>Osteoclastogenesis</subject><subject>OSTEOCLASTS</subject><subject>OSTEOPETROSIS</subject><subject>Osteopetrosis - genetics</subject><subject>Patients</subject><subject>Peripheral blood mononuclear cells</subject><subject>Pluripotency</subject><subject>Stem cells</subject><subject>Surface markers</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNhwQsgS2xgkdb_Ey_pqNCiASQE68hxblqPnDjYDqg7HgGJN-RJcGZaFpVYWbLPPb6fPoSeU3JCCWGnu3aIJ4Iz9gCtqGS8EqqmD9GK1LWoiOD0CD1JaUcIUVKpx-iIc02k1GKFfp_3vbMOxoyvYIRosgsjDj0OKUOw3qSccB_DgK_nwYzYjd1socOTn6ObQl4GCzlgC94nbMYO9_NoF4vxhf4OKburvTUtWg_5ujxstpuP6z8_f0XwJhfd_rcJcgzJpafoUW98gme35zH6-vb8y-ai2n56d7l5s60sr2tWKQKMCE2FboWlLZW9XUtS65YZquvOtK0GAGYFaTtWLqHsLem6NkYpq4Xlx-jVwTvF8G0uizaDS0sOM0KYU8Mk1ZwJxWhBX95Dd2GOJeJCyXXNFZG8UK8PlC05UoS-maIbTLxpKGmWppqlqWZpqrAvbo1zO0D3j7yrpgCnB-CH83Dzf1Pz_uzD573yL78RojI</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Rössler, Uta</creator><creator>Hennig, Anna Floriane</creator><creator>Stelzer, Nina</creator><creator>Bose, Shroddha</creator><creator>Kopp, Johannes</creator><creator>Søe, Kent</creator><creator>Cyganek, Lukas</creator><creator>Zifarelli, Giovanni</creator><creator>Ali, Salaheddine</creator><creator>Hagen, Maja</creator><creator>Strässler, Elisabeth Tamara</creator><creator>Hahn, Gabriele</creator><creator>Pusch, Michael</creator><creator>Stauber, Tobias</creator><creator>Izsvák, Zsuzsanna</creator><creator>Gossen, Manfred</creator><creator>Stachelscheid, Harald</creator><creator>Kornak, Uwe</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3942-3209</orcidid><orcidid>https://orcid.org/0000-0001-7402-314X</orcidid><orcidid>https://orcid.org/0000-0002-0391-1497</orcidid><orcidid>https://orcid.org/0000-0002-1761-4063</orcidid><orcidid>https://orcid.org/0000-0002-9283-4605</orcidid><orcidid>https://orcid.org/0000-0002-5286-9686</orcidid><orcidid>https://orcid.org/0000-0002-0351-1645</orcidid><orcidid>https://orcid.org/0000-0002-2053-2384</orcidid><orcidid>https://orcid.org/0000-0001-5567-8300</orcidid><orcidid>https://orcid.org/0000-0003-2203-7229</orcidid><orcidid>https://orcid.org/0000-0002-4582-9838</orcidid><orcidid>https://orcid.org/0000-0003-1969-333X</orcidid><orcidid>https://orcid.org/0000-0001-9120-1382</orcidid><orcidid>https://orcid.org/0000-0002-8644-8847</orcidid><orcidid>https://orcid.org/0000-0003-0727-6109</orcidid></search><sort><creationdate>202108</creationdate><title>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</title><author>Rössler, Uta ; Hennig, Anna Floriane ; Stelzer, Nina ; Bose, Shroddha ; Kopp, Johannes ; Søe, Kent ; Cyganek, Lukas ; Zifarelli, Giovanni ; Ali, Salaheddine ; Hagen, Maja ; Strässler, Elisabeth Tamara ; Hahn, Gabriele ; Pusch, Michael ; Stauber, Tobias ; Izsvák, Zsuzsanna ; Gossen, Manfred ; Stachelscheid, Harald ; Kornak, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-60e2049149b4c1b15fc75089b2a198dabb9eee2c40bd2b2aeced5178aa66c94c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bone resorption</topic><topic>Cell differentiation</topic><topic>Chloride Channels - genetics</topic><topic>CLCN7</topic><topic>hiPSCs</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells</topic><topic>Ion currents</topic><topic>Leukocyte migration</topic><topic>Leukocytes, Mononuclear</topic><topic>Localization</topic><topic>Medical innovations</topic><topic>Missense mutation</topic><topic>Monocytes</topic><topic>Mutation</topic><topic>Neural coding</topic><topic>Osteoclastogenesis</topic><topic>OSTEOCLASTS</topic><topic>OSTEOPETROSIS</topic><topic>Osteopetrosis - genetics</topic><topic>Patients</topic><topic>Peripheral blood mononuclear cells</topic><topic>Pluripotency</topic><topic>Stem cells</topic><topic>Surface markers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rössler, Uta</creatorcontrib><creatorcontrib>Hennig, Anna Floriane</creatorcontrib><creatorcontrib>Stelzer, Nina</creatorcontrib><creatorcontrib>Bose, Shroddha</creatorcontrib><creatorcontrib>Kopp, Johannes</creatorcontrib><creatorcontrib>Søe, Kent</creatorcontrib><creatorcontrib>Cyganek, Lukas</creatorcontrib><creatorcontrib>Zifarelli, Giovanni</creatorcontrib><creatorcontrib>Ali, Salaheddine</creatorcontrib><creatorcontrib>Hagen, Maja</creatorcontrib><creatorcontrib>Strässler, Elisabeth Tamara</creatorcontrib><creatorcontrib>Hahn, Gabriele</creatorcontrib><creatorcontrib>Pusch, Michael</creatorcontrib><creatorcontrib>Stauber, Tobias</creatorcontrib><creatorcontrib>Izsvák, Zsuzsanna</creatorcontrib><creatorcontrib>Gossen, Manfred</creatorcontrib><creatorcontrib>Stachelscheid, Harald</creatorcontrib><creatorcontrib>Kornak, Uwe</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rössler, Uta</au><au>Hennig, Anna Floriane</au><au>Stelzer, Nina</au><au>Bose, Shroddha</au><au>Kopp, Johannes</au><au>Søe, Kent</au><au>Cyganek, Lukas</au><au>Zifarelli, Giovanni</au><au>Ali, Salaheddine</au><au>Hagen, Maja</au><au>Strässler, Elisabeth Tamara</au><au>Hahn, Gabriele</au><au>Pusch, Michael</au><au>Stauber, Tobias</au><au>Izsvák, Zsuzsanna</au><au>Gossen, Manfred</au><au>Stachelscheid, Harald</au><au>Kornak, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2021-08</date><risdate>2021</risdate><volume>36</volume><issue>8</issue><spage>1621</spage><epage>1635</epage><pages>1621-1635</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><abstract>ABSTRACT
Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three‐step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte‐like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage‐specific gene and surface marker expression proved mesodermal priming, the presence of monocyte‐like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)‐derived osteoclasts hiPSC‐derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC‐osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002‐A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl−/H+‐exchanger ClC‐7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC‐7 displayed residual expression and retained lysosomal co‐localization with OSTM1, the gene coding for the osteopetrosis‐associated transmembrane protein 1, but only ClC‐7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC‐derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss‐of‐function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC‐osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast‐related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33905594</pmid><doi>10.1002/jbmr.4322</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3942-3209</orcidid><orcidid>https://orcid.org/0000-0001-7402-314X</orcidid><orcidid>https://orcid.org/0000-0002-0391-1497</orcidid><orcidid>https://orcid.org/0000-0002-1761-4063</orcidid><orcidid>https://orcid.org/0000-0002-9283-4605</orcidid><orcidid>https://orcid.org/0000-0002-5286-9686</orcidid><orcidid>https://orcid.org/0000-0002-0351-1645</orcidid><orcidid>https://orcid.org/0000-0002-2053-2384</orcidid><orcidid>https://orcid.org/0000-0001-5567-8300</orcidid><orcidid>https://orcid.org/0000-0003-2203-7229</orcidid><orcidid>https://orcid.org/0000-0002-4582-9838</orcidid><orcidid>https://orcid.org/0000-0003-1969-333X</orcidid><orcidid>https://orcid.org/0000-0001-9120-1382</orcidid><orcidid>https://orcid.org/0000-0002-8644-8847</orcidid><orcidid>https://orcid.org/0000-0003-0727-6109</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-0431 |
ispartof | Journal of bone and mineral research, 2021-08, Vol.36 (8), p.1621-1635 |
issn | 0884-0431 1523-4681 |
language | eng |
recordid | cdi_proquest_miscellaneous_2519324621 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Bone resorption Cell differentiation Chloride Channels - genetics CLCN7 hiPSCs Humans Induced Pluripotent Stem Cells Ion currents Leukocyte migration Leukocytes, Mononuclear Localization Medical innovations Missense mutation Monocytes Mutation Neural coding Osteoclastogenesis OSTEOCLASTS OSTEOPETROSIS Osteopetrosis - genetics Patients Peripheral blood mononuclear cells Pluripotency Stem cells Surface markers |
title | Efficient generation of osteoclasts from human induced pluripotent stem cells and functional investigations of lethal CLCN7‐related osteopetrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20generation%20of%20osteoclasts%20from%20human%20induced%20pluripotent%20stem%20cells%20and%20functional%20investigations%20of%20lethal%20CLCN7%E2%80%90related%20osteopetrosis&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=R%C3%B6ssler,%20Uta&rft.date=2021-08&rft.volume=36&rft.issue=8&rft.spage=1621&rft.epage=1635&rft.pages=1621-1635&rft.issn=0884-0431&rft.eissn=1523-4681&rft_id=info:doi/10.1002/jbmr.4322&rft_dat=%3Cproquest_cross%3E2519324621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557836053&rft_id=info:pmid/33905594&rfr_iscdi=true |