Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae
Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which tra...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2021-05, Vol.105 (10), p.3873-3882 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3882 |
---|---|
container_issue | 10 |
container_start_page | 3873 |
container_title | Applied microbiology and biotechnology |
container_volume | 105 |
creator | Zhang, Zi-Xu Wang, Ling-Ru Xu, Ying-Shuang Jiang, Wan-Ting Shi, Tian-Qiong Sun, Xiao-Man Huang, He |
description | Saccharomyces cerevisiae
is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in
S. cerevisiae
were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed.
Key points
• The development of multiplex genome editing in S. cerevisiae was summarized.
• The pros and cons of various multiplex genome editing technologies are discussed.
• Further prospects on the improvement of multiplex genome editing are proposed. |
doi_str_mv | 10.1007/s00253-021-11287-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519315484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662708628</galeid><sourcerecordid>A662708628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhoModq3-AQ8y4EUPU78kM0nmWErVQkFo9eIlZDPfbFNmkjHJlO2_N-tWy4pIDoHkeV_y5SHkNYUTCiA_JADW8hoYrSllStbbJ2RFG85qELR5SlZAZVvLtlNH5EVKtwCFEuI5OeK8A6k6WJHvV2jR58r0d8ZbTJXzVb7Byszz6KzJLvgqDNW0jNnNI26rDfowYYW9y85vdvi1sfbGxDDd7_IWI9655Ay-JM8GMyZ89bAfk28fz7-efa4vv3y6ODu9rG1Lea7XjTJSmEZIthbCDNSKFttGKATZ0k5wRoGCUVJ2VPW97HnDGoamRwo4gOTH5N2-d47hx4Ip68kli-NoPIYlaVZaOG0b1RT07V_obViiL68rFIe2E-VTHqmNGVE7P4Qcjd2V6lMhmAQlmCrUyT-osnqcnA0eB1fODwLvDwKFybjNG7OkpC-urw5ZtmdtDClFHPQc3WTivaagd_L1Xr4u8vUv-XpbQm8eplvWE_Z_Ir9tF4DvgVSu_Abj4_j_qf0J9MK3FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530596890</pqid></control><display><type>article</type><title>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Zi-Xu ; Wang, Ling-Ru ; Xu, Ying-Shuang ; Jiang, Wan-Ting ; Shi, Tian-Qiong ; Sun, Xiao-Man ; Huang, He</creator><creatorcontrib>Zhang, Zi-Xu ; Wang, Ling-Ru ; Xu, Ying-Shuang ; Jiang, Wan-Ting ; Shi, Tian-Qiong ; Sun, Xiao-Man ; Huang, He</creatorcontrib><description>Saccharomyces cerevisiae
is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in
S. cerevisiae
were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed.
Key points
• The development of multiplex genome editing in S. cerevisiae was summarized.
• The pros and cons of various multiplex genome editing technologies are discussed.
• Further prospects on the improvement of multiplex genome editing are proposed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11287-x</identifier><identifier>PMID: 33907890</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Brewer's yeast ; CRISPR ; DNA sequencing ; Fungi ; Genetic aspects ; Genetic modification ; Genome editing ; Genomes ; Life Sciences ; Metabolic pathways ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Multiplexing ; Nucleotide sequencing ; Optimization ; Saccharomyces cerevisiae ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2021-05, Vol.105 (10), p.3873-3882</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</citedby><cites>FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</cites><orcidid>0000-0002-6268-4546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-021-11287-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-021-11287-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zi-Xu</creatorcontrib><creatorcontrib>Wang, Ling-Ru</creatorcontrib><creatorcontrib>Xu, Ying-Shuang</creatorcontrib><creatorcontrib>Jiang, Wan-Ting</creatorcontrib><creatorcontrib>Shi, Tian-Qiong</creatorcontrib><creatorcontrib>Sun, Xiao-Man</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><title>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Saccharomyces cerevisiae
is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in
S. cerevisiae
were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed.
Key points
• The development of multiplex genome editing in S. cerevisiae was summarized.
• The pros and cons of various multiplex genome editing technologies are discussed.
• Further prospects on the improvement of multiplex genome editing are proposed.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>CRISPR</subject><subject>DNA sequencing</subject><subject>Fungi</subject><subject>Genetic aspects</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Metabolic pathways</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Multiplexing</subject><subject>Nucleotide sequencing</subject><subject>Optimization</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFrFDEYhoModq3-AQ8y4EUPU78kM0nmWErVQkFo9eIlZDPfbFNmkjHJlO2_N-tWy4pIDoHkeV_y5SHkNYUTCiA_JADW8hoYrSllStbbJ2RFG85qELR5SlZAZVvLtlNH5EVKtwCFEuI5OeK8A6k6WJHvV2jR58r0d8ZbTJXzVb7Byszz6KzJLvgqDNW0jNnNI26rDfowYYW9y85vdvi1sfbGxDDd7_IWI9655Ay-JM8GMyZ89bAfk28fz7-efa4vv3y6ODu9rG1Lea7XjTJSmEZIthbCDNSKFttGKATZ0k5wRoGCUVJ2VPW97HnDGoamRwo4gOTH5N2-d47hx4Ip68kli-NoPIYlaVZaOG0b1RT07V_obViiL68rFIe2E-VTHqmNGVE7P4Qcjd2V6lMhmAQlmCrUyT-osnqcnA0eB1fODwLvDwKFybjNG7OkpC-urw5ZtmdtDClFHPQc3WTivaagd_L1Xr4u8vUv-XpbQm8eplvWE_Z_Ir9tF4DvgVSu_Abj4_j_qf0J9MK3FQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zhang, Zi-Xu</creator><creator>Wang, Ling-Ru</creator><creator>Xu, Ying-Shuang</creator><creator>Jiang, Wan-Ting</creator><creator>Shi, Tian-Qiong</creator><creator>Sun, Xiao-Man</creator><creator>Huang, He</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6268-4546</orcidid></search><sort><creationdate>20210501</creationdate><title>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</title><author>Zhang, Zi-Xu ; Wang, Ling-Ru ; Xu, Ying-Shuang ; Jiang, Wan-Ting ; Shi, Tian-Qiong ; Sun, Xiao-Man ; Huang, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>CRISPR</topic><topic>DNA sequencing</topic><topic>Fungi</topic><topic>Genetic aspects</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Metabolic pathways</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Multiplexing</topic><topic>Nucleotide sequencing</topic><topic>Optimization</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zi-Xu</creatorcontrib><creatorcontrib>Wang, Ling-Ru</creatorcontrib><creatorcontrib>Xu, Ying-Shuang</creatorcontrib><creatorcontrib>Jiang, Wan-Ting</creatorcontrib><creatorcontrib>Shi, Tian-Qiong</creatorcontrib><creatorcontrib>Sun, Xiao-Man</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zi-Xu</au><au>Wang, Ling-Ru</au><au>Xu, Ying-Shuang</au><au>Jiang, Wan-Ting</au><au>Shi, Tian-Qiong</au><au>Sun, Xiao-Man</au><au>Huang, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>105</volume><issue>10</issue><spage>3873</spage><epage>3882</epage><pages>3873-3882</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Saccharomyces cerevisiae
is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in
S. cerevisiae
were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed.
Key points
• The development of multiplex genome editing in S. cerevisiae was summarized.
• The pros and cons of various multiplex genome editing technologies are discussed.
• Further prospects on the improvement of multiplex genome editing are proposed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33907890</pmid><doi>10.1007/s00253-021-11287-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6268-4546</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2021-05, Vol.105 (10), p.3873-3882 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2519315484 |
source | Springer Nature - Complete Springer Journals |
subjects | Biomedical and Life Sciences Biotechnology Brewer's yeast CRISPR DNA sequencing Fungi Genetic aspects Genetic modification Genome editing Genomes Life Sciences Metabolic pathways Methods Microbial Genetics and Genomics Microbiology Mini-Review Multiplexing Nucleotide sequencing Optimization Saccharomyces cerevisiae Yeast |
title | Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20the%20application%20of%20multiplex%20genome%20editing%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhang,%20Zi-Xu&rft.date=2021-05-01&rft.volume=105&rft.issue=10&rft.spage=3873&rft.epage=3882&rft.pages=3873-3882&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11287-x&rft_dat=%3Cgale_proqu%3EA662708628%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530596890&rft_id=info:pmid/33907890&rft_galeid=A662708628&rfr_iscdi=true |