Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae

Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2021-05, Vol.105 (10), p.3873-3882
Hauptverfasser: Zhang, Zi-Xu, Wang, Ling-Ru, Xu, Ying-Shuang, Jiang, Wan-Ting, Shi, Tian-Qiong, Sun, Xiao-Man, Huang, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3882
container_issue 10
container_start_page 3873
container_title Applied microbiology and biotechnology
container_volume 105
creator Zhang, Zi-Xu
Wang, Ling-Ru
Xu, Ying-Shuang
Jiang, Wan-Ting
Shi, Tian-Qiong
Sun, Xiao-Man
Huang, He
description Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed. Key points • The development of multiplex genome editing in S. cerevisiae was summarized. • The pros and cons of various multiplex genome editing technologies are discussed. • Further prospects on the improvement of multiplex genome editing are proposed.
doi_str_mv 10.1007/s00253-021-11287-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519315484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662708628</galeid><sourcerecordid>A662708628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhoModq3-AQ8y4EUPU78kM0nmWErVQkFo9eIlZDPfbFNmkjHJlO2_N-tWy4pIDoHkeV_y5SHkNYUTCiA_JADW8hoYrSllStbbJ2RFG85qELR5SlZAZVvLtlNH5EVKtwCFEuI5OeK8A6k6WJHvV2jR58r0d8ZbTJXzVb7Byszz6KzJLvgqDNW0jNnNI26rDfowYYW9y85vdvi1sfbGxDDd7_IWI9655Ay-JM8GMyZ89bAfk28fz7-efa4vv3y6ODu9rG1Lea7XjTJSmEZIthbCDNSKFttGKATZ0k5wRoGCUVJ2VPW97HnDGoamRwo4gOTH5N2-d47hx4Ip68kli-NoPIYlaVZaOG0b1RT07V_obViiL68rFIe2E-VTHqmNGVE7P4Qcjd2V6lMhmAQlmCrUyT-osnqcnA0eB1fODwLvDwKFybjNG7OkpC-urw5ZtmdtDClFHPQc3WTivaagd_L1Xr4u8vUv-XpbQm8eplvWE_Z_Ir9tF4DvgVSu_Abj4_j_qf0J9MK3FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530596890</pqid></control><display><type>article</type><title>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Zi-Xu ; Wang, Ling-Ru ; Xu, Ying-Shuang ; Jiang, Wan-Ting ; Shi, Tian-Qiong ; Sun, Xiao-Man ; Huang, He</creator><creatorcontrib>Zhang, Zi-Xu ; Wang, Ling-Ru ; Xu, Ying-Shuang ; Jiang, Wan-Ting ; Shi, Tian-Qiong ; Sun, Xiao-Man ; Huang, He</creatorcontrib><description>Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed. Key points • The development of multiplex genome editing in S. cerevisiae was summarized. • The pros and cons of various multiplex genome editing technologies are discussed. • Further prospects on the improvement of multiplex genome editing are proposed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11287-x</identifier><identifier>PMID: 33907890</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Brewer's yeast ; CRISPR ; DNA sequencing ; Fungi ; Genetic aspects ; Genetic modification ; Genome editing ; Genomes ; Life Sciences ; Metabolic pathways ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Multiplexing ; Nucleotide sequencing ; Optimization ; Saccharomyces cerevisiae ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2021-05, Vol.105 (10), p.3873-3882</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</citedby><cites>FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</cites><orcidid>0000-0002-6268-4546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-021-11287-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-021-11287-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33907890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zi-Xu</creatorcontrib><creatorcontrib>Wang, Ling-Ru</creatorcontrib><creatorcontrib>Xu, Ying-Shuang</creatorcontrib><creatorcontrib>Jiang, Wan-Ting</creatorcontrib><creatorcontrib>Shi, Tian-Qiong</creatorcontrib><creatorcontrib>Sun, Xiao-Man</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><title>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed. Key points • The development of multiplex genome editing in S. cerevisiae was summarized. • The pros and cons of various multiplex genome editing technologies are discussed. • Further prospects on the improvement of multiplex genome editing are proposed.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brewer's yeast</subject><subject>CRISPR</subject><subject>DNA sequencing</subject><subject>Fungi</subject><subject>Genetic aspects</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Metabolic pathways</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Multiplexing</subject><subject>Nucleotide sequencing</subject><subject>Optimization</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFrFDEYhoModq3-AQ8y4EUPU78kM0nmWErVQkFo9eIlZDPfbFNmkjHJlO2_N-tWy4pIDoHkeV_y5SHkNYUTCiA_JADW8hoYrSllStbbJ2RFG85qELR5SlZAZVvLtlNH5EVKtwCFEuI5OeK8A6k6WJHvV2jR58r0d8ZbTJXzVb7Byszz6KzJLvgqDNW0jNnNI26rDfowYYW9y85vdvi1sfbGxDDd7_IWI9655Ay-JM8GMyZ89bAfk28fz7-efa4vv3y6ODu9rG1Lea7XjTJSmEZIthbCDNSKFttGKATZ0k5wRoGCUVJ2VPW97HnDGoamRwo4gOTH5N2-d47hx4Ip68kli-NoPIYlaVZaOG0b1RT07V_obViiL68rFIe2E-VTHqmNGVE7P4Qcjd2V6lMhmAQlmCrUyT-osnqcnA0eB1fODwLvDwKFybjNG7OkpC-urw5ZtmdtDClFHPQc3WTivaagd_L1Xr4u8vUv-XpbQm8eplvWE_Z_Ir9tF4DvgVSu_Abj4_j_qf0J9MK3FQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zhang, Zi-Xu</creator><creator>Wang, Ling-Ru</creator><creator>Xu, Ying-Shuang</creator><creator>Jiang, Wan-Ting</creator><creator>Shi, Tian-Qiong</creator><creator>Sun, Xiao-Man</creator><creator>Huang, He</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6268-4546</orcidid></search><sort><creationdate>20210501</creationdate><title>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</title><author>Zhang, Zi-Xu ; Wang, Ling-Ru ; Xu, Ying-Shuang ; Jiang, Wan-Ting ; Shi, Tian-Qiong ; Sun, Xiao-Man ; Huang, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-b48a76a4672b66af1c65e5468e075196321010a877918dd7d34242eade10ef073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brewer's yeast</topic><topic>CRISPR</topic><topic>DNA sequencing</topic><topic>Fungi</topic><topic>Genetic aspects</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Metabolic pathways</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Multiplexing</topic><topic>Nucleotide sequencing</topic><topic>Optimization</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zi-Xu</creatorcontrib><creatorcontrib>Wang, Ling-Ru</creatorcontrib><creatorcontrib>Xu, Ying-Shuang</creatorcontrib><creatorcontrib>Jiang, Wan-Ting</creatorcontrib><creatorcontrib>Shi, Tian-Qiong</creatorcontrib><creatorcontrib>Sun, Xiao-Man</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zi-Xu</au><au>Wang, Ling-Ru</au><au>Xu, Ying-Shuang</au><au>Jiang, Wan-Ting</au><au>Shi, Tian-Qiong</au><au>Sun, Xiao-Man</au><au>Huang, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>105</volume><issue>10</issue><spage>3873</spage><epage>3882</epage><pages>3873-3882</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Saccharomyces cerevisiae is a widely used microorganism and a greatly popular cell factory for the production of various chemicals. In order to improve the yield of target chemicals, it is often necessary to increase the copy numbers of key genes or engineer the related metabolic pathways, which traditionally required time-consuming repetitive rounds of gene editing. With the development of gene-editing technologies such as meganucleases, TALENs, and the CRISPR/Cas system, multiplex genome editing has entered a period of rapid development to speed up cell factory optimization. Multi-copy insertion and removing bottlenecks in biosynthetic pathways can be achieved through gene integration and knockout, for which multiplexing can be accomplished by targeting repetitive sequences and multiple sites, respectively. Importantly, the development of the CRISPR/Cas system has greatly increased the speed and efficiency of multiplex editing. In this review, the various multiplex genome editing technologies in S. cerevisiae were summarized, and the principles, advantages, and the disadvantages were analyzed and discussed. Finally, the practical applications and future prospects of multiplex genome editing were discussed. Key points • The development of multiplex genome editing in S. cerevisiae was summarized. • The pros and cons of various multiplex genome editing technologies are discussed. • Further prospects on the improvement of multiplex genome editing are proposed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33907890</pmid><doi>10.1007/s00253-021-11287-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6268-4546</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2021-05, Vol.105 (10), p.3873-3882
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2519315484
source Springer Nature - Complete Springer Journals
subjects Biomedical and Life Sciences
Biotechnology
Brewer's yeast
CRISPR
DNA sequencing
Fungi
Genetic aspects
Genetic modification
Genome editing
Genomes
Life Sciences
Metabolic pathways
Methods
Microbial Genetics and Genomics
Microbiology
Mini-Review
Multiplexing
Nucleotide sequencing
Optimization
Saccharomyces cerevisiae
Yeast
title Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20the%20application%20of%20multiplex%20genome%20editing%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhang,%20Zi-Xu&rft.date=2021-05-01&rft.volume=105&rft.issue=10&rft.spage=3873&rft.epage=3882&rft.pages=3873-3882&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11287-x&rft_dat=%3Cgale_proqu%3EA662708628%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530596890&rft_id=info:pmid/33907890&rft_galeid=A662708628&rfr_iscdi=true