Biogeographical Modeling of Alien Worlds

In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrobiology 2021-07, Vol.21 (7), p.831-844
Hauptverfasser: Stevenson, David S, Wallace, Rodrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 844
container_issue 7
container_start_page 831
container_title Astrobiology
container_volume 21
creator Stevenson, David S
Wallace, Rodrick
description In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds.
doi_str_mv 10.1089/ast.2020.2304
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518982453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518982453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</originalsourceid><addsrcrecordid>eNpd0D1PwzAQgGELgWgpjKwoEkuXlPNX7Iyl4ksqYgExWk58KanSuNjN0H9PohYGprvh0en0EnJNYUZB53c27mYMGMwYB3FCxlRKlWpQcDrsnKYUlBiRixjXAJSzPDsnI85zECrLxmR6X_sV-lWw26-6tE3y6h02dbtKfJXMmxrb5NOHxsVLclbZJuLVcU7Ix-PD--I5Xb49vSzmy7TkjO5SJSF3WVagoNIhqtKBRia1wEpxKajmRSG5FQKYrrRSUjhpta7ySjrGkfEJmR7uboP_7jDuzKaOJTaNbdF30TBJda6ZkLynt__o2neh7b_rlcgVpxoGlR5UGXyMASuzDfXGhr2hYIaEpk9ohoRmSNj7m-PVrtig-9O_zfgPXlVpRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549731803</pqid></control><display><type>article</type><title>Biogeographical Modeling of Alien Worlds</title><source>Alma/SFX Local Collection</source><creator>Stevenson, David S ; Wallace, Rodrick</creator><creatorcontrib>Stevenson, David S ; Wallace, Rodrick</creatorcontrib><description>In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds.</description><identifier>ISSN: 1531-1074</identifier><identifier>EISSN: 1557-8070</identifier><identifier>DOI: 10.1089/ast.2020.2304</identifier><identifier>PMID: 33904766</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Biodiversity ; Biogeography ; Biological evolution ; Constraints ; Dissection ; Evolution ; Extrasolar planets ; Geology ; Geomorphology ; Niches ; Organisms ; Physical characteristics ; Physical properties ; Planetary evolution ; Speciation ; Species diversity ; Species richness ; Species-area relationship ; Survival ; Terrestrial environments ; Terrestrial planets</subject><ispartof>Astrobiology, 2021-07, Vol.21 (7), p.831-844</ispartof><rights>Copyright Mary Ann Liebert, Inc. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</citedby><cites>FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</cites><orcidid>0000-0002-4114-8242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33904766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevenson, David S</creatorcontrib><creatorcontrib>Wallace, Rodrick</creatorcontrib><title>Biogeographical Modeling of Alien Worlds</title><title>Astrobiology</title><addtitle>Astrobiology</addtitle><description>In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds.</description><subject>Biodiversity</subject><subject>Biogeography</subject><subject>Biological evolution</subject><subject>Constraints</subject><subject>Dissection</subject><subject>Evolution</subject><subject>Extrasolar planets</subject><subject>Geology</subject><subject>Geomorphology</subject><subject>Niches</subject><subject>Organisms</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Planetary evolution</subject><subject>Speciation</subject><subject>Species diversity</subject><subject>Species richness</subject><subject>Species-area relationship</subject><subject>Survival</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><issn>1531-1074</issn><issn>1557-8070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQgGELgWgpjKwoEkuXlPNX7Iyl4ksqYgExWk58KanSuNjN0H9PohYGprvh0en0EnJNYUZB53c27mYMGMwYB3FCxlRKlWpQcDrsnKYUlBiRixjXAJSzPDsnI85zECrLxmR6X_sV-lWw26-6tE3y6h02dbtKfJXMmxrb5NOHxsVLclbZJuLVcU7Ix-PD--I5Xb49vSzmy7TkjO5SJSF3WVagoNIhqtKBRia1wEpxKajmRSG5FQKYrrRSUjhpta7ySjrGkfEJmR7uboP_7jDuzKaOJTaNbdF30TBJda6ZkLynt__o2neh7b_rlcgVpxoGlR5UGXyMASuzDfXGhr2hYIaEpk9ohoRmSNj7m-PVrtig-9O_zfgPXlVpRw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Stevenson, David S</creator><creator>Wallace, Rodrick</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4114-8242</orcidid></search><sort><creationdate>20210701</creationdate><title>Biogeographical Modeling of Alien Worlds</title><author>Stevenson, David S ; Wallace, Rodrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodiversity</topic><topic>Biogeography</topic><topic>Biological evolution</topic><topic>Constraints</topic><topic>Dissection</topic><topic>Evolution</topic><topic>Extrasolar planets</topic><topic>Geology</topic><topic>Geomorphology</topic><topic>Niches</topic><topic>Organisms</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Planetary evolution</topic><topic>Speciation</topic><topic>Species diversity</topic><topic>Species richness</topic><topic>Species-area relationship</topic><topic>Survival</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevenson, David S</creatorcontrib><creatorcontrib>Wallace, Rodrick</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Astrobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevenson, David S</au><au>Wallace, Rodrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogeographical Modeling of Alien Worlds</atitle><jtitle>Astrobiology</jtitle><addtitle>Astrobiology</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>21</volume><issue>7</issue><spage>831</spage><epage>844</epage><pages>831-844</pages><issn>1531-1074</issn><eissn>1557-8070</eissn><abstract>In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>33904766</pmid><doi>10.1089/ast.2020.2304</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4114-8242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1531-1074
ispartof Astrobiology, 2021-07, Vol.21 (7), p.831-844
issn 1531-1074
1557-8070
language eng
recordid cdi_proquest_miscellaneous_2518982453
source Alma/SFX Local Collection
subjects Biodiversity
Biogeography
Biological evolution
Constraints
Dissection
Evolution
Extrasolar planets
Geology
Geomorphology
Niches
Organisms
Physical characteristics
Physical properties
Planetary evolution
Speciation
Species diversity
Species richness
Species-area relationship
Survival
Terrestrial environments
Terrestrial planets
title Biogeographical Modeling of Alien Worlds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogeographical%20Modeling%20of%20Alien%20Worlds&rft.jtitle=Astrobiology&rft.au=Stevenson,%20David%20S&rft.date=2021-07-01&rft.volume=21&rft.issue=7&rft.spage=831&rft.epage=844&rft.pages=831-844&rft.issn=1531-1074&rft.eissn=1557-8070&rft_id=info:doi/10.1089/ast.2020.2304&rft_dat=%3Cproquest_cross%3E2518982453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549731803&rft_id=info:pmid/33904766&rfr_iscdi=true