Biogeographical Modeling of Alien Worlds
In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms...
Gespeichert in:
Veröffentlicht in: | Astrobiology 2021-07, Vol.21 (7), p.831-844 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 844 |
---|---|
container_issue | 7 |
container_start_page | 831 |
container_title | Astrobiology |
container_volume | 21 |
creator | Stevenson, David S Wallace, Rodrick |
description | In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds. |
doi_str_mv | 10.1089/ast.2020.2304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518982453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518982453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</originalsourceid><addsrcrecordid>eNpd0D1PwzAQgGELgWgpjKwoEkuXlPNX7Iyl4ksqYgExWk58KanSuNjN0H9PohYGprvh0en0EnJNYUZB53c27mYMGMwYB3FCxlRKlWpQcDrsnKYUlBiRixjXAJSzPDsnI85zECrLxmR6X_sV-lWw26-6tE3y6h02dbtKfJXMmxrb5NOHxsVLclbZJuLVcU7Ix-PD--I5Xb49vSzmy7TkjO5SJSF3WVagoNIhqtKBRia1wEpxKajmRSG5FQKYrrRSUjhpta7ySjrGkfEJmR7uboP_7jDuzKaOJTaNbdF30TBJda6ZkLynt__o2neh7b_rlcgVpxoGlR5UGXyMASuzDfXGhr2hYIaEpk9ohoRmSNj7m-PVrtig-9O_zfgPXlVpRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549731803</pqid></control><display><type>article</type><title>Biogeographical Modeling of Alien Worlds</title><source>Alma/SFX Local Collection</source><creator>Stevenson, David S ; Wallace, Rodrick</creator><creatorcontrib>Stevenson, David S ; Wallace, Rodrick</creatorcontrib><description>In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds.</description><identifier>ISSN: 1531-1074</identifier><identifier>EISSN: 1557-8070</identifier><identifier>DOI: 10.1089/ast.2020.2304</identifier><identifier>PMID: 33904766</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Biodiversity ; Biogeography ; Biological evolution ; Constraints ; Dissection ; Evolution ; Extrasolar planets ; Geology ; Geomorphology ; Niches ; Organisms ; Physical characteristics ; Physical properties ; Planetary evolution ; Speciation ; Species diversity ; Species richness ; Species-area relationship ; Survival ; Terrestrial environments ; Terrestrial planets</subject><ispartof>Astrobiology, 2021-07, Vol.21 (7), p.831-844</ispartof><rights>Copyright Mary Ann Liebert, Inc. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</citedby><cites>FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</cites><orcidid>0000-0002-4114-8242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33904766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevenson, David S</creatorcontrib><creatorcontrib>Wallace, Rodrick</creatorcontrib><title>Biogeographical Modeling of Alien Worlds</title><title>Astrobiology</title><addtitle>Astrobiology</addtitle><description>In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds.</description><subject>Biodiversity</subject><subject>Biogeography</subject><subject>Biological evolution</subject><subject>Constraints</subject><subject>Dissection</subject><subject>Evolution</subject><subject>Extrasolar planets</subject><subject>Geology</subject><subject>Geomorphology</subject><subject>Niches</subject><subject>Organisms</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Planetary evolution</subject><subject>Speciation</subject><subject>Species diversity</subject><subject>Species richness</subject><subject>Species-area relationship</subject><subject>Survival</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><issn>1531-1074</issn><issn>1557-8070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQgGELgWgpjKwoEkuXlPNX7Iyl4ksqYgExWk58KanSuNjN0H9PohYGprvh0en0EnJNYUZB53c27mYMGMwYB3FCxlRKlWpQcDrsnKYUlBiRixjXAJSzPDsnI85zECrLxmR6X_sV-lWw26-6tE3y6h02dbtKfJXMmxrb5NOHxsVLclbZJuLVcU7Ix-PD--I5Xb49vSzmy7TkjO5SJSF3WVagoNIhqtKBRia1wEpxKajmRSG5FQKYrrRSUjhpta7ySjrGkfEJmR7uboP_7jDuzKaOJTaNbdF30TBJda6ZkLynt__o2neh7b_rlcgVpxoGlR5UGXyMASuzDfXGhr2hYIaEpk9ohoRmSNj7m-PVrtig-9O_zfgPXlVpRw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Stevenson, David S</creator><creator>Wallace, Rodrick</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4114-8242</orcidid></search><sort><creationdate>20210701</creationdate><title>Biogeographical Modeling of Alien Worlds</title><author>Stevenson, David S ; Wallace, Rodrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7509d66be415dee7cd08e2584ef7354183bb53a44028f87754d5a88f9f5d23e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodiversity</topic><topic>Biogeography</topic><topic>Biological evolution</topic><topic>Constraints</topic><topic>Dissection</topic><topic>Evolution</topic><topic>Extrasolar planets</topic><topic>Geology</topic><topic>Geomorphology</topic><topic>Niches</topic><topic>Organisms</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Planetary evolution</topic><topic>Speciation</topic><topic>Species diversity</topic><topic>Species richness</topic><topic>Species-area relationship</topic><topic>Survival</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevenson, David S</creatorcontrib><creatorcontrib>Wallace, Rodrick</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Astrobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevenson, David S</au><au>Wallace, Rodrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogeographical Modeling of Alien Worlds</atitle><jtitle>Astrobiology</jtitle><addtitle>Astrobiology</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>21</volume><issue>7</issue><spage>831</spage><epage>844</epage><pages>831-844</pages><issn>1531-1074</issn><eissn>1557-8070</eissn><abstract>In this article, we partially quantify the biological potential of an exoplanet. We employ a variety of biogeographical analyses, placing biological evolution in the context of the geological evolution of the planet as a whole. Terrestrial (as in Earthly) biodiversity is tightly constrained in terms of species richness by its environment. An organism's habitable environment may be considered its niche space or hypervolume in terms of the physical characteristics in which that organism can survive and reproduce. This fundamental niche forms the broader space in which the organism realizes its true niche in terms of its interactions with other species. Many of the physical characteristics can be determined from astrophysical constraints and are thus amenable for dissection. However, the geographical space that organisms occupy is driven by the geological evolution of a sizable telluric planet. In turn, this is driven by the progressive differentiation of its interior to produce increasingly felsic crust. Using a variety of available models, we can then constrain the available space that species can inhabit using species-area relationships. By considering a combination of astrophysical constraints and geographical space, we partially quantify the numbers of species that can inhabit the landscape that geology provides. Finally, we also identify a correlation between geomorphological scale and speciation, which, if validated, will allow further dissection of species diversity on alien worlds.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>33904766</pmid><doi>10.1089/ast.2020.2304</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4114-8242</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1531-1074 |
ispartof | Astrobiology, 2021-07, Vol.21 (7), p.831-844 |
issn | 1531-1074 1557-8070 |
language | eng |
recordid | cdi_proquest_miscellaneous_2518982453 |
source | Alma/SFX Local Collection |
subjects | Biodiversity Biogeography Biological evolution Constraints Dissection Evolution Extrasolar planets Geology Geomorphology Niches Organisms Physical characteristics Physical properties Planetary evolution Speciation Species diversity Species richness Species-area relationship Survival Terrestrial environments Terrestrial planets |
title | Biogeographical Modeling of Alien Worlds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogeographical%20Modeling%20of%20Alien%20Worlds&rft.jtitle=Astrobiology&rft.au=Stevenson,%20David%20S&rft.date=2021-07-01&rft.volume=21&rft.issue=7&rft.spage=831&rft.epage=844&rft.pages=831-844&rft.issn=1531-1074&rft.eissn=1557-8070&rft_id=info:doi/10.1089/ast.2020.2304&rft_dat=%3Cproquest_cross%3E2518982453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549731803&rft_id=info:pmid/33904766&rfr_iscdi=true |