Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor

A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2021-08, Vol.68 (8), p.2815-2823
Hauptverfasser: Ting, Yung, Yu, Chih-Hsuan, Lin, Jun-Hong, Johar, Tehseen, Wang, Chien-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2823
container_issue 8
container_start_page 2815
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 68
creator Ting, Yung
Yu, Chih-Hsuan
Lin, Jun-Hong
Johar, Tehseen
Wang, Chien-Wen
description A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of \pi /4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of {V}_{pp} = {300} V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.
doi_str_mv 10.1109/TUFFC.2021.3075449
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518969873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415708</ieee_id><sourcerecordid>2518969873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMotlZfQEEWvHjZOkk2m-SmVqtCRcEWj0uana1btpuabAV9ere2evA0A_P9P8NHyDGFPqWgL8aT4XDQZ8Bon4MUSaJ3SJcKJmKlhdglXVBKxBwodMhBCHMA2jJsn3Q41wCasi65vMFQzurIFZGJXt6cb-JrNItoVNZofDT25gOrsp7Fr-0SPZf45bBC2_jSRo-ucf6Q7BWmCni0nT0yGd6OB_fx6OnuYXA1ii0XtIkTVuRc0ZRZDnmukSpMJUijRDq1OXA2NRYKA1YnYiqUybVFKXJOKZNS84T3yPmmd-nd-wpDky3KYLGqTI1uFTImqNKpVpK36Nk_dO5Wvm6_aykhJEtTzVqKbSjrXQgei2zpy4XxnxmFbO03-_Gbrf1mW79t6HRbvZouMP-L_AptgZMNUCLi31knVEhQ_Bvn-Xxv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555726692</pqid></control><display><type>article</type><title>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</title><source>IEEE Electronic Library (IEL)</source><creator>Ting, Yung ; Yu, Chih-Hsuan ; Lin, Jun-Hong ; Johar, Tehseen ; Wang, Chien-Wen</creator><creatorcontrib>Ting, Yung ; Yu, Chih-Hsuan ; Lin, Jun-Hong ; Johar, Tehseen ; Wang, Chien-Wen</creatorcontrib><description><![CDATA[A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>/4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of <inline-formula> <tex-math notation="LaTeX">{V}_{pp} = {300} </tex-math></inline-formula> V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2021.3075449</identifier><identifier>PMID: 33900912</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Actuators ; Ceramics ; Circuits ; Coefficient of friction ; Linear piezoelectric motor ; Piezoelectric ceramics ; Piezoelectric motors ; Rotors ; Shape ; Standing waves ; Stators ; traveling wave (TW) ; Traveling waves ; Vibrations ; Wave reflection ; wave-reduction mechanism</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-08, Vol.68 (8), p.2815-2823</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</citedby><cites>FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</cites><orcidid>0000-0001-7524-8324 ; 0000-0001-5388-1946 ; 0000-0002-7079-7479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9415708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33900912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Yung</creatorcontrib><creatorcontrib>Yu, Chih-Hsuan</creatorcontrib><creatorcontrib>Lin, Jun-Hong</creatorcontrib><creatorcontrib>Johar, Tehseen</creatorcontrib><creatorcontrib>Wang, Chien-Wen</creatorcontrib><title>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description><![CDATA[A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>/4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of <inline-formula> <tex-math notation="LaTeX">{V}_{pp} = {300} </tex-math></inline-formula> V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.]]></description><subject>Acoustics</subject><subject>Actuators</subject><subject>Ceramics</subject><subject>Circuits</subject><subject>Coefficient of friction</subject><subject>Linear piezoelectric motor</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectric motors</subject><subject>Rotors</subject><subject>Shape</subject><subject>Standing waves</subject><subject>Stators</subject><subject>traveling wave (TW)</subject><subject>Traveling waves</subject><subject>Vibrations</subject><subject>Wave reflection</subject><subject>wave-reduction mechanism</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFKAzEQhoMotlZfQEEWvHjZOkk2m-SmVqtCRcEWj0uana1btpuabAV9ere2evA0A_P9P8NHyDGFPqWgL8aT4XDQZ8Bon4MUSaJ3SJcKJmKlhdglXVBKxBwodMhBCHMA2jJsn3Q41wCasi65vMFQzurIFZGJXt6cb-JrNItoVNZofDT25gOrsp7Fr-0SPZf45bBC2_jSRo-ucf6Q7BWmCni0nT0yGd6OB_fx6OnuYXA1ii0XtIkTVuRc0ZRZDnmukSpMJUijRDq1OXA2NRYKA1YnYiqUybVFKXJOKZNS84T3yPmmd-nd-wpDky3KYLGqTI1uFTImqNKpVpK36Nk_dO5Wvm6_aykhJEtTzVqKbSjrXQgei2zpy4XxnxmFbO03-_Gbrf1mW79t6HRbvZouMP-L_AptgZMNUCLi31knVEhQ_Bvn-Xxv</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ting, Yung</creator><creator>Yu, Chih-Hsuan</creator><creator>Lin, Jun-Hong</creator><creator>Johar, Tehseen</creator><creator>Wang, Chien-Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7524-8324</orcidid><orcidid>https://orcid.org/0000-0001-5388-1946</orcidid><orcidid>https://orcid.org/0000-0002-7079-7479</orcidid></search><sort><creationdate>20210801</creationdate><title>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</title><author>Ting, Yung ; Yu, Chih-Hsuan ; Lin, Jun-Hong ; Johar, Tehseen ; Wang, Chien-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Actuators</topic><topic>Ceramics</topic><topic>Circuits</topic><topic>Coefficient of friction</topic><topic>Linear piezoelectric motor</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectric motors</topic><topic>Rotors</topic><topic>Shape</topic><topic>Standing waves</topic><topic>Stators</topic><topic>traveling wave (TW)</topic><topic>Traveling waves</topic><topic>Vibrations</topic><topic>Wave reflection</topic><topic>wave-reduction mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Yung</creatorcontrib><creatorcontrib>Yu, Chih-Hsuan</creatorcontrib><creatorcontrib>Lin, Jun-Hong</creatorcontrib><creatorcontrib>Johar, Tehseen</creatorcontrib><creatorcontrib>Wang, Chien-Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ting, Yung</au><au>Yu, Chih-Hsuan</au><au>Lin, Jun-Hong</au><au>Johar, Tehseen</au><au>Wang, Chien-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>68</volume><issue>8</issue><spage>2815</spage><epage>2823</epage><pages>2815-2823</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>/4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of <inline-formula> <tex-math notation="LaTeX">{V}_{pp} = {300} </tex-math></inline-formula> V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>33900912</pmid><doi>10.1109/TUFFC.2021.3075449</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7524-8324</orcidid><orcidid>https://orcid.org/0000-0001-5388-1946</orcidid><orcidid>https://orcid.org/0000-0002-7079-7479</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-08, Vol.68 (8), p.2815-2823
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_2518969873
source IEEE Electronic Library (IEL)
subjects Acoustics
Actuators
Ceramics
Circuits
Coefficient of friction
Linear piezoelectric motor
Piezoelectric ceramics
Piezoelectric motors
Rotors
Shape
Standing waves
Stators
traveling wave (TW)
Traveling waves
Vibrations
Wave reflection
wave-reduction mechanism
title Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Short-Beam%20Linear%20Traveling-Wave%20Piezoelectric%20Motor&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Ting,%20Yung&rft.date=2021-08-01&rft.volume=68&rft.issue=8&rft.spage=2815&rft.epage=2823&rft.pages=2815-2823&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2021.3075449&rft_dat=%3Cproquest_RIE%3E2518969873%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555726692&rft_id=info:pmid/33900912&rft_ieee_id=9415708&rfr_iscdi=true