Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor
A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2021-08, Vol.68 (8), p.2815-2823 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2823 |
---|---|
container_issue | 8 |
container_start_page | 2815 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 68 |
creator | Ting, Yung Yu, Chih-Hsuan Lin, Jun-Hong Johar, Tehseen Wang, Chien-Wen |
description | A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of \pi /4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of {V}_{pp} = {300} V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale. |
doi_str_mv | 10.1109/TUFFC.2021.3075449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518969873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415708</ieee_id><sourcerecordid>2518969873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMotlZfQEEWvHjZOkk2m-SmVqtCRcEWj0uana1btpuabAV9ere2evA0A_P9P8NHyDGFPqWgL8aT4XDQZ8Bon4MUSaJ3SJcKJmKlhdglXVBKxBwodMhBCHMA2jJsn3Q41wCasi65vMFQzurIFZGJXt6cb-JrNItoVNZofDT25gOrsp7Fr-0SPZf45bBC2_jSRo-ucf6Q7BWmCni0nT0yGd6OB_fx6OnuYXA1ii0XtIkTVuRc0ZRZDnmukSpMJUijRDq1OXA2NRYKA1YnYiqUybVFKXJOKZNS84T3yPmmd-nd-wpDky3KYLGqTI1uFTImqNKpVpK36Nk_dO5Wvm6_aykhJEtTzVqKbSjrXQgei2zpy4XxnxmFbO03-_Gbrf1mW79t6HRbvZouMP-L_AptgZMNUCLi31knVEhQ_Bvn-Xxv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555726692</pqid></control><display><type>article</type><title>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</title><source>IEEE Electronic Library (IEL)</source><creator>Ting, Yung ; Yu, Chih-Hsuan ; Lin, Jun-Hong ; Johar, Tehseen ; Wang, Chien-Wen</creator><creatorcontrib>Ting, Yung ; Yu, Chih-Hsuan ; Lin, Jun-Hong ; Johar, Tehseen ; Wang, Chien-Wen</creatorcontrib><description><![CDATA[A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>/4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of <inline-formula> <tex-math notation="LaTeX">{V}_{pp} = {300} </tex-math></inline-formula> V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2021.3075449</identifier><identifier>PMID: 33900912</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Actuators ; Ceramics ; Circuits ; Coefficient of friction ; Linear piezoelectric motor ; Piezoelectric ceramics ; Piezoelectric motors ; Rotors ; Shape ; Standing waves ; Stators ; traveling wave (TW) ; Traveling waves ; Vibrations ; Wave reflection ; wave-reduction mechanism</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-08, Vol.68 (8), p.2815-2823</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</citedby><cites>FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</cites><orcidid>0000-0001-7524-8324 ; 0000-0001-5388-1946 ; 0000-0002-7079-7479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9415708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33900912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Yung</creatorcontrib><creatorcontrib>Yu, Chih-Hsuan</creatorcontrib><creatorcontrib>Lin, Jun-Hong</creatorcontrib><creatorcontrib>Johar, Tehseen</creatorcontrib><creatorcontrib>Wang, Chien-Wen</creatorcontrib><title>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description><![CDATA[A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>/4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of <inline-formula> <tex-math notation="LaTeX">{V}_{pp} = {300} </tex-math></inline-formula> V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.]]></description><subject>Acoustics</subject><subject>Actuators</subject><subject>Ceramics</subject><subject>Circuits</subject><subject>Coefficient of friction</subject><subject>Linear piezoelectric motor</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectric motors</subject><subject>Rotors</subject><subject>Shape</subject><subject>Standing waves</subject><subject>Stators</subject><subject>traveling wave (TW)</subject><subject>Traveling waves</subject><subject>Vibrations</subject><subject>Wave reflection</subject><subject>wave-reduction mechanism</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFKAzEQhoMotlZfQEEWvHjZOkk2m-SmVqtCRcEWj0uana1btpuabAV9ere2evA0A_P9P8NHyDGFPqWgL8aT4XDQZ8Bon4MUSaJ3SJcKJmKlhdglXVBKxBwodMhBCHMA2jJsn3Q41wCasi65vMFQzurIFZGJXt6cb-JrNItoVNZofDT25gOrsp7Fr-0SPZf45bBC2_jSRo-ucf6Q7BWmCni0nT0yGd6OB_fx6OnuYXA1ii0XtIkTVuRc0ZRZDnmukSpMJUijRDq1OXA2NRYKA1YnYiqUybVFKXJOKZNS84T3yPmmd-nd-wpDky3KYLGqTI1uFTImqNKpVpK36Nk_dO5Wvm6_aykhJEtTzVqKbSjrXQgei2zpy4XxnxmFbO03-_Gbrf1mW79t6HRbvZouMP-L_AptgZMNUCLi31knVEhQ_Bvn-Xxv</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ting, Yung</creator><creator>Yu, Chih-Hsuan</creator><creator>Lin, Jun-Hong</creator><creator>Johar, Tehseen</creator><creator>Wang, Chien-Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7524-8324</orcidid><orcidid>https://orcid.org/0000-0001-5388-1946</orcidid><orcidid>https://orcid.org/0000-0002-7079-7479</orcidid></search><sort><creationdate>20210801</creationdate><title>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</title><author>Ting, Yung ; Yu, Chih-Hsuan ; Lin, Jun-Hong ; Johar, Tehseen ; Wang, Chien-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-42fd38162c30dd9e18e6707a856bcd032bac0fa0c945b58ad9ce75d3112779343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Actuators</topic><topic>Ceramics</topic><topic>Circuits</topic><topic>Coefficient of friction</topic><topic>Linear piezoelectric motor</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectric motors</topic><topic>Rotors</topic><topic>Shape</topic><topic>Standing waves</topic><topic>Stators</topic><topic>traveling wave (TW)</topic><topic>Traveling waves</topic><topic>Vibrations</topic><topic>Wave reflection</topic><topic>wave-reduction mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Yung</creatorcontrib><creatorcontrib>Yu, Chih-Hsuan</creatorcontrib><creatorcontrib>Lin, Jun-Hong</creatorcontrib><creatorcontrib>Johar, Tehseen</creatorcontrib><creatorcontrib>Wang, Chien-Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ting, Yung</au><au>Yu, Chih-Hsuan</au><au>Lin, Jun-Hong</au><au>Johar, Tehseen</au><au>Wang, Chien-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>68</volume><issue>8</issue><spage>2815</spage><epage>2823</epage><pages>2815-2823</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of <inline-formula> <tex-math notation="LaTeX">\pi </tex-math></inline-formula>/4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of <inline-formula> <tex-math notation="LaTeX">{V}_{pp} = {300} </tex-math></inline-formula> V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>33900912</pmid><doi>10.1109/TUFFC.2021.3075449</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7524-8324</orcidid><orcidid>https://orcid.org/0000-0001-5388-1946</orcidid><orcidid>https://orcid.org/0000-0002-7079-7479</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-08, Vol.68 (8), p.2815-2823 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_2518969873 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Actuators Ceramics Circuits Coefficient of friction Linear piezoelectric motor Piezoelectric ceramics Piezoelectric motors Rotors Shape Standing waves Stators traveling wave (TW) Traveling waves Vibrations Wave reflection wave-reduction mechanism |
title | Design of a Short-Beam Linear Traveling-Wave Piezoelectric Motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Short-Beam%20Linear%20Traveling-Wave%20Piezoelectric%20Motor&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Ting,%20Yung&rft.date=2021-08-01&rft.volume=68&rft.issue=8&rft.spage=2815&rft.epage=2823&rft.pages=2815-2823&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2021.3075449&rft_dat=%3Cproquest_RIE%3E2518969873%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555726692&rft_id=info:pmid/33900912&rft_ieee_id=9415708&rfr_iscdi=true |